精英家教网 > 初中数学 > 题目详情

作业宝如图,△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,连接
A2B1并延长到点B2,使A2B1=B1B2,以A2B2为边作等边△A2B2C2,A3为等边
△A2B2C2的中心,连接A3B2并延长到点B3,使A3B2=B2B3,以A3B3为边作等边△A3B3C3,依次作下去得到等边△AnBnCn,则等边△A5B5C5的边长为________.


分析:作A2D1⊥A1B1于D1,A3D2⊥A2B2于D2,根据等边三角形的中心的性质得∠A2B1D1=30°,B1D1=A1B1=,利用余弦的定义得cos∠A2B1D1=cos30°==,可计算出A2B1=,由A2B1=B1B2得到A2B2=,用同样的方法可计算出A3B3=(2,于是A4B4=(3,A5B5=(4
解答:解:作A2D1⊥A1B1于D1,A3D2⊥A2B2于D2,如图,
∵△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,
∴∠A2B1D1=30°,B1D1=A1B1=
∴cos∠A2B1D1=cos30°==
∴A2B1=
∵A2B1=B1B2
∴A2B2=
同理可得∠A3B2D2=30°,B2D2=A2B2=×=
∴cos∠A3B2D2=cos30°==
∴A3B2=
∵A3B2=B2B3
∴A3B3==(2=(2
同理可得A4B4=(3
A5B5=(4.=
故答案为
点评:本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了特殊角的三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,△A1B1C1是△ABC平移后得到的三角形,则△A1B1C1≌△ABC,理由是
平移不改变图形的形状和大小

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,△A1B1C1是由△ABC经过平移得到的,把△ABC向
平移
2
个单位,再向
平移
5
个单位得到△A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△A1B1C1是由ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为(  )
A、10cm2B、12cm2C、15cm2D、17cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为(  )

查看答案和解析>>

同步练习册答案