精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,点A(0,4),B(-3,4),C(-6,0),动点P从点A出发以1个单位/秒的速度在y轴上向下运动,动点Q同时从点C出发以2个单位/秒的速度在x轴上向右运动,过点P作PD⊥y轴,交OB于D,连接DQ.当点P与点O重合时,两动点均停止运动.设运动的时间为t秒.

(1)当t=1时,求线段DP的长;
(2)连接CD,设△CDQ的面积为S,求S关于t的函数解析式,并求出S的最大值;
(3)运动过程中是否存在某一时刻,使△ODQ与△ABC相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.
(1);(2)S=,当时,S最大值=4;(3)

试题分析:(1)先由题意得到OA=4,AB=3,CO=6,再求出当t=1时,AP、OP的长,最后根据PD⊥y轴,AB⊥y轴,结合平行线分线段成比例即可列比例式求解;
(2)作DE⊥CO于点E,分别用含t的字母表示出CQ、AP、OP,即可表示出DE的长,再根据三角形的面积公式即可得到S关于t的函数解析式,根据二次函数的性质即可求得S的最大值;
(3)分两种情况,结合相似三角形的判定方法讨论即可.
(1)由A(0,4),B(-3,4),C(-6,0)可知OA=4,AB=3,CO=6,
当t=1时,AP=1,则OP=3,
∵PD⊥y轴,AB⊥y轴
∴PD∥AB
 
 
解得DP=
(2)CQ=2t,AP=t,OP=4–t
作DE⊥CO于点E,则DE=OP=4–t   
∴S==×2t×(4–t)=   
时,S最大值=4
(3)分两种情况讨论:
①当时,点Q在CO上运动(当t=3时,△ODQ不存在)
∵AB∥CO 
∴∠BOC=∠ABO<∠ABC
可证得BO=BC
∴∠BOC=∠BCO>∠BCA
∵AB∥CO
∴∠BAC=∠ACO<∠BCO=∠BOC
∴当时,△ODQ与△ABC不可能相似。
②当时,点Q在x轴正半轴上运动,
延长AB,由AB∥CO可得∠FBC=∠BCO=∠BOC,
∴∠ABC=∠DOQ
OQ=,由DP∥AB可得OD=
时,
 ,内;
时,
内;
∴存在,使△ODQ与△ABC相似。
点评:解答本题的关键是熟练掌握求二次函数的最值的方法:公式法或配方法;同时熟练运用平行线分线段成比例,准确列出比例式解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米 .已知山坡PA与水平方向PC的夹角为30o,AC⊥PC于点C, P、A两点相距米.请你建立适当的平面直角坐标系解决下列问题.

(1)求水平距离PC的长;
(2)求出球的飞行路线所在抛物线的解析式;
(3)判断小明这一杆能否把高尔夫球从P点直接打入球洞A.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

银川市某企业为某计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月(前年12月份原材料价格540元/件),该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
560
580
600
620
640
660
680
700
720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:

(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).分别求出去年4月份和10月份每个月销售该配件的利润,并比较那个月的利润大;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的顶点(-1,-2)且图象经过(1,6),求此抛物线解析式.   
(1)求该二次函数的解析式;
(2)当y>0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是(     )
A.二次函数图像的对称轴是直线x=1;
B.当x>0时,y<4;
C.当x≤1时,函数值y是随着x的增大而增大;
D.当y≥0时,x的取值范围是-1≤x≤3时.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象如图所示,令,则(   )
A.M>0B.M<0
C.M=0 D.M的符号不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是(    )
A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数为常数)的图象如下,则的值为(      )
A.B.±C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,长方形中,cm,cm,现有一动点出发以2cm/秒的速度,沿矩形的边回到点,设点运动的时间为秒.

(1)当秒时,求的面积;
(2)当为何值时,点与点的距离为5cm?
(3)当为何值时,以线段的长度为三边长的三角形是直角三角形,且是斜边.

查看答案和解析>>

同步练习册答案