精英家教网 > 初中数学 > 题目详情
已知:
a
b
=
c
d
=
2
5
,(b+d≠0)则
a+c
b+d
=
 
分析:分别设a为2m,c=2n,进而得到用m,n表示的b,d的值,把它们代入所给代数式求解即可.
解答:解:设a为2m,c=2n,则b=5m,d=5n.
a+c
b+d
=
2m+2n
5m+5n
=
2(m+n)
5(m+n)
=
2
5

故答案为
2
5
点评:考查等比性质的应用:若
a
b
=
c
d
=k,则
a+c
b+d
=k.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,已知直线AB∥CD,∠DCF=110°,且AE=AF,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB、CD与直线EF分别交于E、F点,已知:AB∥CD,∠EFD的平分线FG交AB于点G,∠1=60°15′,则∠2=
59.5
59.5
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:AB∥CD,
求证:∠ABE+∠BED+∠EDC=360°.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F 
证明:∵∠BAP+∠APD=180°,(已知)
∴AB∥CD.(
同旁内角互补,两直线平行
同旁内角互补,两直线平行

∴∠BAP=∠APC.(
两直线平行,内错角相等
两直线平行,内错角相等

∵∠1=∠2,(已知)
∴∠BAP-∠1=∠APC-∠2.(等式的性质)
即∠EAP=∠EPA
∴AE∥PF.(
内错角相等,两直线平行
内错角相等,两直线平行

∴∠E=∠F.(
两直线平行,内错角相等
两直线平行,内错角相等

查看答案和解析>>

同步练习册答案