精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD内接于⊙O,P在AB的延长线上,且数学公式
求证:PC∥BD.

证明:∵∠ADC+∠ABC=180°,∠ABC+∠CBP=180°,
∴∠CBP=∠ADC,

∴△CBP∽△ADC,
∴∠PCB=∠CAD,
∵∠CAD=∠CBD,
∴∠PCB=∠CBD,
∴PC∥BD.
分析:由四边形ABCD内接于⊙O,根据圆的内接四边形的性质,易证得∠CBP=∠ADC,又由,即可得△CBP∽△ADC,然后由相似三角形的对应角相等与圆周角定理,易证得∠PCB=∠CBD,即可证得PC∥BD.
点评:此题考查了相似三角形的判定与性质、圆周角定理、圆的内接四边形的性质以及平行线的判定.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案