精英家教网 > 初中数学 > 题目详情
(2013•湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.
分析:(1)根据抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),直接得出抛物线的解析式为;y=-(x-3)(x+1),再整理即可,
(2)根据抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,即可得出答案.
解答:解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).
∴抛物线的解析式为;y=-(x-3)(x+1),
即y=-x2+2x+3,
(2)∵抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为:(1,4).
点评:此题考查了用待定系数法求函数的解析式,用到的知识点是二次函数的解析式的形式,关键是根据题意选择合适的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•湖州一模)如图,已知E、F是平行四边形ABCD对角线BD的三等分点,且CG=5,则AD等于
10
10

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州一模)为增强学生的身体素质,我校坚持长年的全员体育锻炼,并定期进行体能测试,下图是将初三某班学生的立定跳远成绩(精确到0.1米)进行整理后,画出的频数分布直方图的一部分,已知从左到右第一、二、四、五组的频率分别是0.05,0.15,0.30,0.35,第三小组的频数为9人(共有5个小组).
(1)该班参加这次测试的学生有多少人?
(2)若成绩在2.0米以上(含2.0米)的为合格,问该班成绩的合格率是多少?
(3)这次测试中,该班学生成绩中位数落在哪一小组内?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州一模)如图①是矩形包书纸的示意图,虚线是折痕,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.
(1)现有一本书长为25cm,宽为20cm,厚度是2cm,如果按照如图①的包书方式,并且折叠进去的宽度是3cm,则需要包书纸的长和宽分别为多少?(请直接写出答案).
(2)已知数学课本长为26cm,宽为18.5cm,厚为1cm,小明用一张面积为1260cm2 的矩形包书纸按如图①包好了这本书,求折进去的宽度.
(3)如图②,矩形ABCD是一张一个角(△AEF)被污损的包书纸,已知AB=30,BC=50,AE=12,AF=16,要使用没有污损的部分包一本长为19,宽为16,厚为6的字典,小红认为只要按如图②的剪裁方式剪出一张面积最大的矩形PGCH就能包好这本字典.设PM=x,矩形PGCH的面积为y,当x取何值时y最大?并由此判断小红的想法是否可行.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则
AD
AB
的值为(  )

查看答案和解析>>

同步练习册答案