(本题12分) 如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.![]()
(1)试探索四边形EGFH的形状,并说明理由;
(2)当点E运动到什么位置时,四边形EGFH是菱形?并说明理由;
(3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段BC的关系,并说明你的理由.
(1)EFGH为平行四边形(2)当点E运动到AD的中点时,四边形EGFH是菱形(3)EF⊥BC,EF=
BC
解析试题分析:解:(1) EFGH为平行四边形
理由:∵G、F、H分別是BE、BC、CE的中点
∴GF∥EC ,FH∥BE∴ EFGH为平行四边形 ……4分
(2)当点E运动到AD的中点时,四边形EGFH是菱形
理由:∵四边形ABCD是等腰梯形
∴AB="CD" ∠A=∠D
∵AE=DE
∴△ABE≌△DCE
∴BE=CE
∵G、H分別是BE、CE的中点
∴GF=
BE,FH=
CE
∴GF=FH
∵ EFGH为平行四边形
∴四边形EFGH是菱形……4分
(3)EF⊥BC,EF=
BC
理由:∵ 四边形EGFH是正方形
∴EG=EH,∠BEC=90°
∵BE=CE,F为BC的中点,
∴EF⊥BC,EF=
BC……4分(答对一半得2分)
考点: 本题考查了多边形的判定
点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对各多边形的基本判定熟练把握
科目:初中数学 来源: 题型:
(本题12分) 如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,
,
,B点坐标为(4,0).点
是边
上一点,且
.点
、
分别从
、
同时出发,以1厘米/秒的速度分别沿
、
向点
运动(当点F运动到点B时,点E随之停止运动),EM、CD的延长线交于点P,FP交AD于点Q.⊙E半径为
,设运动时间为
秒。
(1)求直线BC的解析式。
(2)当
为何值时,
?
(3)在(2)问条件下,⊙E与直线PF是否相切;如果相切,加以证明,并求出切点的坐标。如果不相切,说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题12分)如图,点O是等边△ABC内一点,D是△ABC外的一点, ∠AOB= 110°,
∠BOC=
,△BOC ≌△ADC,∠OCD=60°,连接OD。
(1)求证:△OCD是等边三角形;
(2)当
=150°时,试判断△AOD 的形状,并说明理由;
(3)探究:当
为多少度时,△AOD是等腰三角形。
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题12分)如图,正方形ABCD的边长是2,边BC在x轴上,边AB在y轴上,,将一把三角尺如图放置,其中M为AD的中点,逆时针旋转三角尺.
(1)当三角尺的一边经过C点时,此时三角尺的另一边和AB边交于点
,求此时直线PM的解析式;
(2)继续旋转三角尺,三角尺的一边与x轴交于点G, 三角尺的另一边与AB交于
,PM的延长线与CD的延长线交于点F,若三角形G
F的面积为4,求此时直线PM的解析式;
(3)当旋转到三角尺的一边经过点B,另一直角边的延长线与x轴交于点G,,求此时三角形GOF的面积.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012学年人教版九年级第一学期期末考试数学卷 题型:解答题
(本题12分)如图,已知抛物线y=
x2+3与x轴交于点A、B,与直线y=
x+b相交于点B、C,直线y=
x+b与y轴交于点E.
(1)写出直线BC的解析式;
(2)求△ABC的面积;
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A、B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动。设运动时间为t秒,请写出△MNB的面积s与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com