精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(-8,0)和(0,6).将矩形OABC绕点O顺时针旋转α度,得到四边形OA′B′C′,使得边A′B′与y轴交于点D,此时边OA′、B′C′分别与BC边所在的直线相交于点P、Q.
(1)如图1,当点D与点B′重合时,求点D的坐标;
(2)在(1)的条件下,求数学公式的值;
(3)如图2,若点D与点B′不重合,则数学公式的值是否发生变化?若不变,试证明你的结论;若有变化,请说明理由.

解:(1)∵将矩形OABC绕点O顺时针旋转α度,得到四边形OA'B'C',
且A、C的坐标分别为(-8,0)和(0,6),
∴OA'=OA=8,A'B'=AB=OC=6

∴点D的坐标为(0,10)

(2)∵OB'=10,CO=6,∴B'C=4
,且CO=6,

同理CQ=3


(或:∵


(3)如图所示,作C′E∥OA交OP于点E,
∵C′E∥OA,且PE∥CQ,
∴四边形PEC′Q是平行四边形,
∴PQ=C′E,
∵C′E⊥OD,A′B′⊥A′O,
∴∠C′EO+∠EOD=90°,∠ODA′+∠EOD=90°
∴∠C'EO=∠ODA'
又∵∠EOC'=∠DA'O=90°
∴△C'EO∽△ODA′

的值不会发生改变.
分析:(1)将坐标转化为矩形边长,再用勾股定理求矩形对角线OB的长,可得点D的坐标;
(2)因为OC=AB=6,利用∠A′OB′的正切值可求PC,同理可求CQ,已知OD,可求的值;
(3)用平移法将PQ平移到C′E的位置,证明△OC′E∽△A′OD,可证==(定值)
点评:本题考查了旋转的性质,勾股定理,解直角三角形,相似三角形的相关知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案