【题目】如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°,到点Q,将点M绕点P按逆时针方向旋转60°到点N,连结AQ,PM,PN,作直线QN.
(1)求证:AM=QN;
(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由;
(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.
【答案】
(1)证明:如图1,连接PQ,
由点P绕点A按顺时针方向旋转60°到点Q,
可得,AP=AQ,∠PAQ=60°,
∴△APQ为等边三角形,
∴PA=PQ,∠APQ=60°,
由点M绕点P按逆时针方向旋转60°到点N,
可得,PM=PN,∠MPN=60°,
∴∠APM=∠QPN,
则△APM≌△QPN(SAS),
∴AM=QN
(2)解:存在.
如图2,
由(1)中的证明可知,△APM≌△QPN,
∴∠AMP=∠QNP,
∵直线QN与以点P为圆心,以PN的长为半径的圆相切,
∴∠AMP=∠QNP=90°,
即:PN⊥QN,
在R△APM中,∠PAB=45°,PA=2,
∴AM=
(3)解:如图3,
由(1)知,△APQ是等边三角形,
∴PA=PQ,∠APQ=60°,
∵以点P为圆心,以PN的长为半径的圆经过点Q,
∴PN=PQ=PA,
∵PM=PN,
∴PA=PM,
∵∠PAB=45°,
∴∠APM=90°,
∴∠MPQ=∠APM﹣∠APQ=30°,
∵∠MPN=60°,
∴∠QPN=90°,
∴劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角∠QPN=90°,半径为PN=PM=PA=2,
∴劣弧NQ与两条半径所围成的扇形的面积= =π.
【解析】(1)根据旋转的旋转判断出△APQ为等边三角形,再判断出∠APM=∠QPN,从而得出△APM≌△QPN即可;(2)由直线和圆相切得出∠AMP=∠QNP=90°,再用勾股定理即可求出结论;(3)先判断出PA=PQ,再判断出PQ=PN=PM,进而求出∠QPM=30°,即可求出∠QPN=90°,最后用扇形的面积公式即可.
科目:初中数学 来源: 题型:
【题目】九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是( )
成绩 | 6 | 7 | 8 | 9 | 10 |
人数 | 正 | 正 | 正 | 正 |
A.8,8
B.8,8.5
C.9,8
D.9,8.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=45°,∠ACB=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,点F在线段AG上,延长DA至点E,使AE=AF,连接EG,CG,DF,若EG=DF,点G在AC的垂直平分线上,则 的值为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对△ABC纸片进行如下操作: 第1次操作:将△ABC沿着过AB中点D1的直线折叠,使点A落在BC边上的A1处,折痕D1E1到BC的距离记作h1 , 然后还原纸片;
第2次操作:将△AD1E1沿着过AD1中点D2的直线折叠,使点A落在D1E1边上的A1处,折痕D1E1到BC的距离记作h2 , 然后还原纸片;
…
按上述方法不断操作下去…,经过第n次操作后得到的折痕DnEn到BC的距离记作hn , 若h=1,则hn的值不可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km.设爸爸骑行时间为x(h).
(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;
(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;
(3)请回答谁先到达老家.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据 ≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为( )
A.
B.
C.
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com