精英家教网 > 初中数学 > 题目详情
附加题:
已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如图1摆放,点O、A、C在一条直线上.将直角三角板OCD绕点O逆时针方向转动,变化摆放如图位置
(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是
 
;如图2,若要OB恰好平分∠COD,则∠AOC的度数是
 

精英家教网
(2)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.
精英家教网
(3)当三角板OCD从图1的位置开始,绕点O逆时针方向旋转一周,保持射线OM平分∠AOC、射线ON平分∠BOD(∠AOC≤180°,∠BOD≤180°),在旋转过程中,(2)中的结论是否保持不变?如果保持不变,请说明理由;如果变化,请说明变化的情况和结果(即旋转角度a在什么范围内时∠MON的度数是多少).
分析:利用三角板角的特征和角平分线的定义解答:
(1)由图可得角之间的关系:∠BOD=90°-∠COD,∠AOC=90°-
1
2
∠COD,据此解答;
(2)由图可得角之间的关系:∠MON=
1
2
(∠AOB-∠COD)+∠COD;
(3)可分以下情况考虑:①当0°<α<180°时;②α=180°时,两种情况:点M在OB上和点M在BO上;③180°<α<240°时;④α=240°,⑤240°<α<360°时五种情况讨论.
解答:解:(1)∠BOD=90°-∠COD=90°-30°=60°,
∠AOC=90°-
1
2
∠COD=90°-
1
2
×30°=75°.

(2)不变,60°.
根据图中所示∠MON=
1
2
(∠AOB-∠COD)+∠COD=
1
2
(90°-30°)+30°=60度.

(3)①当0°<α<180°时,
∠MON=
1
2
(90°+∠BOC)+
1
2
(30°+∠BOC)-∠BOC=60°
②α=180°时,即∠AOC为平角,
(1)点M在OB上,
∴∠MOD=∠BOC+∠COD=90°+30°=120°,
又∵ON平分∠BOD,
∴∠MON=120×
1
2
=60度.
(2)点M在BO上,
∠MON=180°-60°=120度.
故∠MON=60°或120°
③180°<α<240°时,
2(30°+∠MOD)+90°+∠CON+(∠CON+30°)=360°,
解得:∠MOD+∠CON=90°,则
∠MON=90°+30°=120°
③当α=240°时,∠BOD=180°,那么此时N可以平分在∠BOD的左边,使得∠MON=60°,N平分在∠BOD的右边,那么∠MON=120°
⑤240°<α<360°时,
∠MON=
1
2
(30°-∠AOD)+
1
2
(90°-∠AOD)+∠AOD=60度.
点评:此题很复杂,难点是找出变化过程中的不变量,需要结合图形来计算,对同学们的作图、分析、计算能力有较高要求.在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知∠α是一副三角板中的某个锐角,则(  )
A、sinα>cosαB、sinα<cosαC、sinα=cosαD、以上三种都有可能

查看答案和解析>>

科目:初中数学 来源: 题型:

已知将一幅三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)
(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是
60°
60°

(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是
75°
75°

(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如图1摆放,点O、A、C在一条直线上.将直角三角板OCD绕点O逆时针方向转动,变化摆放如图位置
(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是______;如图2,若要OB恰好平分∠COD,则∠AOC的度数是______.

(2)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.

(3)当三角板OCD从图1的位置开始,绕点O逆时针方向旋转一周,保持射线OM平分∠AOC、射线ON平分∠BOD(∠AOC≤180°,∠BOD≤180°),在旋转过程中,(2)中的结论是否保持不变?如果保持不变,请说明理由;如果变化,请说明变化的情况和结果(即旋转角度a在什么范围内时∠MON的度数是多少).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知∠α是一副三角板中的某个锐角,则(  )
A.sinα>cosαB.sinα<cosα
C.sinα=cosαD.以上三种都有可能

查看答案和解析>>

同步练习册答案