精英家教网 > 初中数学 > 题目详情

如图(6),在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1,过点B作轴垂线,垂足为C,连接AC、AB.

⑴m=         

⑵若△ABC的面积为4,则点B的坐标为            

                                            

 

(1)4    (2)

解析:因为A(1,4)点在反比例函数图象上,所以m=xy=1×4=4.如图,过点A作AD⊥x轴,垂足为D.过点B作BE⊥x轴,垂足为E.由题意得AF⊥BC,AF=AD-FD=AD-BE=4-b.

因为△ABC的面积为4,所以=4.解得a=3.

所以B的坐标为.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分10分)如图,将—矩形OABC放在直角坐际系中,O为坐标原点.点Ax轴正半轴上.点E是边AB上的—个动点(不与点AB重合),过点E的反比例函数的图象与边BC交于点F.

(1)若△OAE、△OCF的而积分别为.且,求k的值.

(2)若OA=2,0C=4,问当点E运动到什么位置时,四边形OAEF的面积最大,其最大值为多少?

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年湖北省荆门市东宝区中考模拟数学卷 题型:解答题

(本小题满分10分)如图,将—矩形OABC放在直角坐际系中,O为坐标原点.点Ax轴正半轴上.点E是边AB上的—个动点(不与点AB重合),过点E的反比例函数的图象与边BC交于点F.

(1)若△OAE、△OCF的而积分别为.且,求k的值.

(2)若OA=2,0C=4,问当点E运动到什么位置时,四边形OAEF的面积最大,其最大值为多少?

 

查看答案和解析>>

科目:初中数学 来源:福建省中考真题 题型:解答题

如图,将-矩形OABC放在直角坐际系中,O为坐标原点,点A在x轴正半轴上,点E是边AB上的一个动点(不与点A、N重合),过点E的反比例函数的图象与边BC交于点F。
(1)若△OAE、△OCF的而积分别为S1,S2,且S1+S2=2,求k的值;
(2)若OA=2,0C=4,问当点E运动到什么位置时,四边形OAEF的面积最大.其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将—矩形OABC放在直角坐际系中,O为坐标原点.点Ax轴正半轴上.点E是边AB上的—个动点(不与点AB重合),过点E的反比例函数的图象与边BC交于点F.

(1)若△OAE、△OCF的而积分别为.且,求k的值.

(2)若OA=2,0C=4,问当点E运动到什么位置时,四边形OAEF的面积最大,其最大值为多少?

查看答案和解析>>

同步练习册答案