精英家教网 > 初中数学 > 题目详情

已知抛物线y=ax2+bx+3交x轴于点A(x1,0)、B(-1,0)且x1>0,OA2+OB2=10,抛物线交y轴于点C.
(1)求抛物线的解析式;
(2)第一象限内,在抛物线上是否存在一点E,使∠ECO=∠ACB?若存在,求出点E的坐标;
(3)直线y=kx(k<0)交直线y=x-3于P,交(1)中抛物线于M,过M作x轴的垂线,垂足为D,交直线y=x-3于N.问:△PMN能否为等腰三角形?若能,求出k的值;若不能,说明理由.

解:(1)∵抛物线y=ax2+bx+3交x轴于点A(x1,0)、B(-1,0)且x1>0,OA2+OB2=10,
∴OA2+(-1)2=10,
∴OA2=9,AO=±3,
∴A点坐标为(3,0),
将A,B代入y=ax2+bx+3得:

解得:
∴y=-x2+2x+3;

(2)∵∠ECO=∠ACB,
∴∠ECA=∠BCO,
过A作AG⊥AC交CE于G,过G作GH⊥x轴于H,
∴Rt△BOC∽Rt△GAC,
=
∴AG=
由△AOC∽△GHA,
得AH=GH=1,
∴G点坐标为(4,1),
∴直线CG的解析式为:y=-x+3,
联立y=-x+3与y=-x2+2x+3,求得E(),

(3)设直线y=x-3交y轴于F,则OF=OA=3,∠OAF=∠OFA=45°,
∵NM∥CE,∠PNM=∠OFA=45°,
若△PMN为等腰三角形,k<0,分三种情况考虑:
①若PM=MN,则∠PMN=90°,与k<0矛盾,舍去,
②若PM=PN,∠PMN=∠PNM=45°,则∠DOM=45°,
∴OD=DM,
∴k=-1,
③若MN=PN,则∠NMP=∠NPM,作PQ⊥y轴于Q,
∵NM∥CF,
∴∠FOP=∠NMP=∠NPM=∠FPO,
∴FP=OF=3,
又∵∠PFQ=45°,∴FQ=PQ=PF=
OQ=OF-FQ=3-
∴P(-3),代入y=kx得,k=1-
综上可知当k=1-或k=-1,△PMN为等腰三角形.
分析:(1)利用已知得出A点坐标,再利用待定系数法求二次函数解析式即可得出答案;
(2)利用相似三角形的判定与性质得出G点坐标,再利用直线CG解析式联立二次函数解析式求出即可;
(3)利用若△PMN为等腰三角形,k<0,分三种情况考虑:PM=MN,PM=PN,MN=PN分别得出即可.
点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和等腰三角形的性质,利用数形结合以及分类讨论求出是这部分考查的重点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案