精英家教网 > 初中数学 > 题目详情

【题目】在ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.

(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AB∥CD.

∵BE∥DF,BE=DF,

∴四边形BFDE是平行四边形.

∵DE⊥AB,

∴∠DEB=90°,

∴四边形BFDE是矩形


(2)解:∵四边形ABCD是平行四边形,

∴AB∥DC,

∴∠DFA=∠FAB.

在Rt△BCF中,由勾股定理,得

BC= = =5,

∴AD=BC=DF=5,

∴∠DAF=∠DFA,

∴∠DAF=∠FAB,

即AF平分∠DAB.


【解析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若抛物线yx26x+mx轴没有交点,则m的取值范围是(  )

A. m9B. m9C. m<﹣9D. m≤﹣9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(成都)已知菱形的边长为2,=60°,对角线相交于点O.以点O为坐标原点,分别以所在直线为x轴、y轴,建立如图所示的直角坐标系.以为对角线作菱形菱形,再以为对角线作菱形菱形,再以为对角线作菱形菱形,按此规律继续作下去,在x轴的正半轴上得到点,......,,则点的坐标为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC、BD相交于点O,AE=CF.

(1)求证:△BOE≌△DOF;
(2)连接DE、BF,若BD⊥EF,试探究四边形EBDF的形状,并对结论给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是

(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当BEF与COF的面积之和最大时,AE=;(5)OGBD=AE2+CF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽上午9:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小丽离家的距离y(米)和所经过的时间x(分)之间的函数关系图象如图所示.请根据图象回答下列问题:

(1)小丽去超市途中的速度是米/分;在超市逗留了分;
(2)求小丽从超市返回家中所需要的时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,E、F是对角线BD上的两点,且BE=DF,
求证:四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).

(1)A1B1C1ABC绕点 逆时针旋转 度得到的,B1的坐标是

(2)求出线段AC旋转过程中所扫过的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是 ( )

A. 一个数的平方根有两个,它们互为相反数 . B. 一个数的立方根不是正数就是负数

C. 负数没有立方根 D. 如果一个数的立方根是这个数本身,那么这个数一定是-101

查看答案和解析>>

同步练习册答案