精英家教网 > 初中数学 > 题目详情
三角形三边长都为自然数,其中一边是4(不是最短边),这样的三角形共有
8
8
个.
分析:根据三角形任意两边之和大于第三边,任意两边之差小于第三边,用穷举法即可得出答案.
解答:解:∵三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,
列举法:当4是最大边时,有(1,4,4),(2,3,4),(2,4,4),(3,3,4),(3,4,4).
当4是中间的边时,有(2,4,5),(3,4,5),(3,4,6).共8个,
故答案为:8.
点评:本题考查了三角形三边关系,难度一般,关键是掌握三角形任意两边之和大于第三边,任意两边之差小于第三边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.并发现了“勾股定理”.若直角三角形三边长都为正整数,则称为一组勾股数,如“勾3股4弦5”.勾股数的寻找与判断不是件很容易的事,不过还是有一些规律可循的.(以下n为正整数,且n≥2)
(1)观察:3、4、5;   5、12、13;  7、24、25;…,
小明发现这几组勾股数的勾都是奇数,从3起就没有间断过,且股和弦只相差1.小明根据发现的规律,推算出这一类的勾股数可以表示为:2n-1、2n(n-1)、2n(n-1)+1.请问:小明的这个结论正确吗?
正确
.(直接回答正确或错误,不必证明)
(2)继续观察第一个数为偶数的情况:4、3、5;   6、8、10;   8、15、17;…,
亲爱的同学们,你能像小明一样发现每组勾股数中的其他两边长都有何规律吗?若用2n表示第一个偶数,请分别用n的代数式来表示其他两边,并证明确实是勾股数.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:013

若三角形三边长都为整数,周长为13,且一边有长为4,则这个三角形的最大边长为

[  ]

A.7
B.6
C.5
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

三角形三边长都为自然数,其中一边是4(不是最短边),这样的三角形共有________个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.并发现了“勾股定理”.若直角三角形三边长都为正整数,则称为一组勾股数,如“勾3股4弦5”.勾股数的寻找与判断不是件很容易的事,不过还是有一些规律可循的.(以下n为正整数,且n≥2)
(1)观察:3、4、5;  5、12、13; 7、24、25;…,
小明发现这几组勾股数的勾都是奇数,从3起就没有间断过,且股和弦只相差1.小明根据发现的规律,推算出这一类的勾股数可以表示为:2n-1、2n(n-1)、2n(n-1)+1.请问:小明的这个结论正确吗?
答______.(直接回答正确或错误,不必证明)
(2)继续观察第一个数为偶数的情况:4、3、5;  6、8、10;  8、15、17;…,
亲爱的同学们,你能像小明一样发现每组勾股数中的其他两边长都有何规律吗?若用2n表示第一个偶数,请分别用n的代数式来表示其他两边,并证明确实是勾股数.

查看答案和解析>>

同步练习册答案