解:△BED为直角三角形.理由如下:
∵AB∥CD
∴∠ABD+∠CDB=180°(两直线平行,同旁内角互补)
又∵∠ABD,∠BDC的平分线交于E,
∴∠EBD=

∠ABD,∠EDB=

∠BDC,
∴∠EBD+∠EDB=

(∠ABD+∠BDC)=

×180°=90°,
∴△BED为直角三角形.
分析:根据平行线的性质,求出∠ABD+∠CDB=180°,然后根据角平分线的性质,求∠EBD+∠EDB的度数,然后根据三角形内角和定理解答.
点评:两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.