精英家教网 > 初中数学 > 题目详情

如图,E是正方形ABCD的边DC上的一点,过A作AF⊥AE,交CB延长线于点F.AE的延长线交BC的延长线于点G.
(1)求证:AE=AF.
(2)若AF=7,DE=2,求EG的长.

(1)证明:正方形ABCD中,∠BAD=90°,AD=AB,
∵AF⊥AE,
∴∠FAB+∠BAE=90°
∵∠DAE+∠BAE=90°,
∴∠FAB=∠DAE,
∵在△ABF与△ADE中.

∴△ABF≌△ADE(ASA),
∴AE=AF;

(2)解:在Rt△ABF中,
∵∠FBA=90°,AF=7,BF=DE=2
∴AB==3
∴EC=DC-DE=3-2,
∵∠D=∠ECG=90°,∠DEA=∠CEG,
∴△ADE∽△GCE,
=
∴EG=-7.
分析:(1)首先利用余角的性质证明∠FAB=∠DAE,然后利用ASA即可证明△ABF≌△ADE,根据全等三角形的对应边相等即可证得;
(2)在直角△ABF中利用勾股定理求得AB的长,则EC的长度即可求得,易证△ADE∽△GCE,根据相似三角形的对应边的比相等即可求解.
点评:本题考查全等三角形的判定与性质以及相似三角形的判定与性质,勾股定理,正确证明△ABF≌△ADE是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,F、G是垂足,若正方形ABCD周长为a,则EF+EG等于(  )
A、
1
4
a
B、
1
2
a
C、a
D、2a

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,已知△ABC中,AB=AC,点P是BC上的一点,PN⊥AC于点N,PM⊥AB于点M,CG⊥AB于点G点.
(1)则CG、PM、PN三者之间的数量关系是
 

(2)如图②,若点P在BC的延长线上,则PM、PN、CG三者是否还有上述关系,若有,请说明理由,若没有,猜想三者之间又有怎样的关系,并证明你的猜想;
(3)如图③,AC是正方形ABCD的对角线,AE=AB,点P是BE上任一点,PN⊥AB于点N,PM⊥AC于点M,猜想PM、PN、AC有什么关系;(直接写出结论)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,ABCD是正方形,P是对角线BD上一点,过P点作直线EF、GH分别平行于AB、BC,交两组对边于E、F、G、H,则四边形PEDG,四边形PHBF都是正方形,四边形PEAH、四边形PGCF都是矩形,设正方形PEDG的边长是a,正方形PHBF的边长是b. 请动手实践并得出结论:
(1)请你动手测量一些线段的长后,计算正方形PEDG与正方形PHBF的面积之和以及矩形PEAH与矩形PGCF的面积之和.
(2)你能根据(1)的结果判断a2+b2与2ab的大小吗?
(3)当点P在什么位置时,有a2+b2=2ab?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图四边形AOBC是正方形,点C的坐标是(4
2
,0),动点P、Q同时从点O出发,点P沿着折线OACB的方向运动;点Q沿着折线OBCA的方向运动,设运动时间为t.
(1)求出经过O、A、C三点的抛物线的解析式.
(2)若点Q的运动速度是点P的2倍,点Q运动到边BC上,连接PQ交AB于点R,当AR=3
2
时,请求出直线PQ的解析式.
(3)若点P的运动速度为每秒1个单位长度,点Q的运动速度为每秒2个单位长度精英家教网,两点运动到相遇停止.设△OPQ的面积为S.请求出S关于t的函数关系式以及自变量t的取值范围.
(4)判断在(3)的条件下,当t为何值时,△OPQ的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于精英家教网点P,连接OP,OQ;
求证:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

同步练习册答案