分析 (1)根据正方形的性质和全等三角形的判定方法证明Rt△ABE≌Rt△AGE和Rt△ADF≌Rt△AGF,由全等三角形的性质即可求出∠EAF=$\frac{1}{2}$∠BAD=45°;
(2)如图2中,将△ADN绕点A顺时针旋转90°至△ABH位置,连接MH,首先证明MN2=MB2+ND2,由Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,设AG=x,则CE=x-4,CF=x-6.因为CE2+CF2=EF2,所以(x-4)2+(x-6)2=102.解这个方程,求出x的值即可得到AG=12,在(2)中,根据MN2=MB2+ND2,列出方程即可解决问题.
解答 解:(1)如图1中,![]()
在Rt△ABE和Rt△AGE中,
$\left\{\begin{array}{l}{AB=AG}\\{AE=AE}\end{array}\right.$,
∴Rt△ABE≌Rt△AGE,
∴∠BAE=∠GAE.
同理,Rt△ADF≌Rt△AGF,
∴∠GAF=∠DAF.
∵四边形ABCD是正方形,
∴∠BAD=90°
∴∠EAF=$\frac{1}{2}$∠BAD=45°;
(2)如图2中,将△ADN绕点A顺时针旋转90°至△ABH位置,连接MH,![]()
由旋转知:∠BAH=∠DAN,AH=AN,
∵四边形ABCD是正方形,∴∠BAD=90°,∵∠EAF=45°,
∴∠BAM+∠DAN=45°,∴∠HAM=∠BAM+∠BAH=45°,
∴∠HAM=∠NAM,又AM=AM,
∴△AHM≌△ANM,
∴MN=MH
∵四边形ABCD是正方形,
∴∠ADB=∠ABD=45°
由旋转知:∠ABH=∠ADB=45°,HB=ND,
∴∠HBM=∠ABH+∠ABD=90°,
∴MH2=HB2+ND2,
∴MN2=MB2+ND2;
∵Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,
∴BE=EG=4,DF=FG=6,则EF=10
设AG=AB=BC=DC=x,则CE=x-4,CF=x-6.
∵CE2+CF2=EF2,
∴(x-4)2+(x-6)2=102.
解这个方程,得x1=12,x2=-2(舍去).
∴AG=12,
∴BD=$\sqrt{2}$AB=12$\sqrt{2}$.
∵MN2=MB2+ND2
设MN=a,则a2=(3 $\sqrt{2}$)2+(12 $\sqrt{2}$-3 $\sqrt{2}$-a)2.
∴a=5 $\sqrt{2}$.即MN=5 $\sqrt{2}$.
点评 本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质以及勾股定理的运用和一元二次方程的运用,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
| A. | x≥4 | B. | x>4且x≠6 | C. | x≠6 | D. | x≥4且x≠6 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com