精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是矩形,P是BC边上的一点,连接PA、PD,求证:PA2+PC2=PB2+PD2

证明:∵四边形ABCD是矩形
∴∠B=∠C=∠BAD=∠ADC=90°
在Rt△ABP和Rt△CDP中根据勾股定理可得
PA2=PB2+AB2
PD2=PC2+CD2
∴PA2+PC2=PB2+AB2+PC2
PB2+PD2=PB2+PC2+CD2=PB2+PC2+AB2
∴PA2+PC2=PB2+PD2
分析:矩形各内角为90°,故△ABP和△CDP为直角三角形,分别利用勾股定理求得PA、PB、PC、PD的关系式并且化简求值即可解题.
点评:本题考查了勾股定理在直角三角形中的运用,考查了矩形各内角为直角的性质,本题中根据PA2=PB2+AB2.PD2=PC2+CD2化简出结果是解题的关键
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案