精英家教网 > 初中数学 > 题目详情

作业宝如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.
(1)求证:△ADC≌△BEA;
(2)若PQ=4,PE=1,求AD的长.

解:(1)证明:∵△ABC是等边三角形,
∴AC=AB,∠C=∠BAE=60°,-
在△ADC与△BEA中,

∴△ADC≌△BEA(SAS);

(2)∵△ADC≌△BEA,
∴∠DAC=∠EBA,AD=BE.
∵∠BPQ=∠BAP+∠ABP,
∴∠BPQ=∠BAP+∠DAC=60°.
∵BQ⊥AD,
∴∠BQP=90°.
∴∠PBQ=30°
∴BP=2PQ.
∵PQ=4,
∴BP=8.
∵PE=1,
∴BE=BP+PE=9,
∴AD=BE=9.
答:AD=9.
分析:(1)根据等边三角形的性质就可以得出AB=BC=AC,∠BAC=∠C=60°,就可以得出△ADC≌△BEA;
(2)由△ADC≌△BEA就可以得出∠DAC=∠EBA,AD=BE.既可以得出∠BPQ=60°,就可以求出PB的值,进而求出BE的值而得出结论
点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,直角三角形的性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,△ABC为等边三角形,P为三角形内一点,将△ABP绕A点逆时针旋转60°后与△ACP′重合,若AP=3,则PP′=
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
(1)求证:△ACD≌△CBF;
(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1
(1)求证∠BPQ=60°
(2)求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE.
①△ACD与△CBF是全等三角形吗?说说你的理由.
②ED=FC吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边△,EC=ED,∠CED=120゜,P为BD的中点,求证:AE=2PE.

查看答案和解析>>

同步练习册答案