精英家教网 > 初中数学 > 题目详情
抛物线y=(x–1)2–7的对称轴是直线            
x=1

试题分析:根据抛物线y=a(x-h)2+k的对称轴是x=h即可确定所以抛物线y=(x-1)2-7的对称轴.
∵y=(x-1)2-7,
∴对称轴是x=1.
点评:解答本题的关键是掌握好由抛物线的顶点坐标式写出抛物线的对称轴方程的方法。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

若二次函数的图象的对称轴是直线x=1.5,并且图象过A(0,-4)和B(4,0)
(1)求此二次函数的解析式; 
(2)求此二次函数图象上点A关于对称轴对称的点A′的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线向左平移1个单位,再向下平移2个单位,得到新的图象的二次函数表达式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,已知抛物线与x轴交于点A(1,0)和点B,顶点为P.
(1)若点P的坐标为(-1,4),求此时抛物线的解析式;
(2)如图若点P的坐标为(-1,k),k<0,点Q是y轴上一个动点,
当k为何值时,QB+QP取得最小值为5;
(3)试求满足(2)时动点Q的坐标. (本题12分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为(  )
A.28米B.48米C.68米D.88米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.

(1)用m的代数式表示点A、D的坐标;
(2)求这个二次函数关系式;
(3)点Q(x,y)为二次函数图象上点P至点B之间的一点,连接PQ、BQ,当x为何值时,四边形ABQP的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数中,m为不小于0的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边.
(1)求这个二次函数的解析式;
(2)点C是抛物线与轴的交点,已知AD=AC(D在线段AB上),有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度移动,同时,另一动点Q从点C出发,以某一速度沿线段CB移动,经过t秒的移动,线段PQ被CD垂直平分,求t的值;
(3)在(2)的情况下,求四边形ACQD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把一边长为60cm的正方形硬纸板,进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计).
(1)如图1,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
①要使折成的长方体盒子的底面积为576cm2,那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)如图2,若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分正好折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为2800cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数的图像过三点,则大小关系正确的是()
A.B.C.D.

查看答案和解析>>

同步练习册答案