精英家教网 > 初中数学 > 题目详情
已知
(1)求函数的定义域;
(2)判断函数的奇偶性,并予以证明;
(3)当a>1时,求使的取值范围。
解:(1)设 
 
则x+1 >0 且 1-x >0
解得:-1<x<1
(2)  证明 知f(x)是奇函数
(3).当a>1时, 由


解得解析:
练习册系列答案
相关习题

科目:初中数学 来源:2013年初中毕业升学考试(山东济宁卷)数学2(解析版) 题型:解答题

阅读材料:若a,b都是非负实数,则.当且仅当a=b时,“=”成立.

证明:∵,∴

.当且仅当a=b时,“=”成立.

举例应用:已知x>0,求函数的最小值.

解:.当且仅当,即x=1时,“=”成立.

当x=1时,函数取得最小值,y最小=4.

问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.

(1)求y关于x的函数关系式(写出自变量x的取值范围);

(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).

 

查看答案和解析>>

科目:初中数学 来源:模拟题 题型:解答题

阅读以下的材料: 
如果两个正数a,b,即a>0,b>0,有下面的不等式:
当且仅当a=b时取到等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:
例:已知x>0,求函数的最小值。
解:令,则有,得,当且仅当时,即时x=2,函数有最小值,最小值为2。
根据上面回答下列问题
① 已知x>0,则当x=______时,函数取到最小值,最小值为______;
② 用篱笆围一个面积为100cm2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆周长是多少;
③已知x>0,则自变量取何值时,函数取到最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源:河北省模拟题 题型:解答题

阅读以下的材料:
如果两个正数a,b,即a>0,b>0,有下面的不等式:
当且仅当a=b时取到等号
我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:
例:已知x>0,求函数的最小值。
解:令a=x,b=,则有,得,当且仅当时,即x=2时,函数有最小值,最小值为2。
根据上面回答下列问题:
①已知x>0,则当x=____时,函数取到最小值,最小值为____;
②用篱笆围一个面积为100m2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆周长是多少;
③已知x>0,则自变量x取何值时,函数取到最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:若a,b都是非负实数,则.当且仅当a=b时,“=”成立.

证明:∵,∴

.当且仅当a=b时,“=”成立.

举例应用:已知x>0,求函数的最小值.

解:.当且仅当,即x=1时,“=”成立.

当x=1时,函数取得最小值,y最小=4.

问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.

(1)求y关于x的函数关系式(写出自变量x的取值范围);

(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).

查看答案和解析>>

同步练习册答案