精英家教网 > 初中数学 > 题目详情

在矩形ABCD中,AD=5,AD=12,P是CD上的动点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=________.


分析:连接PO,过D作DM⊥AC于M,求出AC、DM,根据三角形面积公式得出PE+PF=DM,即可得出答案.
解答:连接PO,过D作DM⊥AC于M,

∵四边形ABCD是矩形,
∴∠ADC=90°,AB=CD=5,AD=12,OA=OC,OB=OD,AC=BD,
∴OA=OD,
由勾股定理得:AC=13,
∴OA=OD=6.5,
∵S△ADC=×12×5=×13×DM,
∴DM=
∵SAOD=S△APO+S△DPO
AO×PE+OD×PF=×AO×DM,
∴PE+PF=DM=
故答案为:
点评:本题考查了矩形的性质,勾股定理,三角形的面积的应用,关键是求出DM长和得出PE+PF=DM.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4,BC=7,P是BC边上与B点不重合的动点,过点P的直线交CD的延长线于R,交AD于Q(Q与D不重合),且∠RPC=45°,设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系,并求自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC.求证:AE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在矩形ABCD中,AB=8,AD=6,E为AB边上一点,连接DE,过C作CF垂直DE.
(1)求证:△CDF∽△DEA;
(2)若设CF=x,DE=y,求y与x的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AF、BE、CE、DF分别是矩形的四个角的角平分线,E、M、F、N是其交点,求证:四边形EMFN是正方形.

查看答案和解析>>

同步练习册答案