精英家教网 > 初中数学 > 题目详情
12.某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1400,-1200,1100,-800,1000,该运动员共跑路程(  )
A.1500mB.4500mC.3700mD.5500m

分析 求出运动情况中记录的各个数的绝对值的和即可.

解答 解:各个数的绝对值的和:1400+1200+1100+800+1000=5500米,
则该运动员共跑路程为5500米.
故选:D.

点评 考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.而求路程不考虑方向,是各数的绝对值的和.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,已知抛物线y=ax2-x+c的对称轴为直线x=1,与x轴的一个交点为A(-1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.
(1)求抛物线的表达式及点E的坐标;
(2)联结AB,求∠B的正切值;
(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.两支蜡烛长、短相同,粗、细不相同,长的能点7时,短的能点10时.同时点燃4时后,两支蜡烛长度正好相等,问长蜡烛长度是短蜡烛的多少倍?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:如图,在△ABC中,BC=BA,BE平分∠CBA交边CA于点E,∠ABC=45°,CD⊥AB,垂足为D,F为BC中点,BE与DF、DC分别交于点G、H.
(1)求证:BH=CA;
(2)求证:BG2=GE2+EA2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入1000元记作+1000元,那么-800表示(  )
A.支出800元B.收入800元C.支出200元D.收入200元

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.观察下列各式:
$\sqrt{1+\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}}$=1+$\frac{1}{1}$-$\frac{1}{2}$=1$\frac{1}{2}$;$\sqrt{1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}}$=1+$\frac{1}{2}$-$\frac{1}{3}$=1$\frac{1}{6}$;
$\sqrt{1+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}}$=1+$\frac{1}{3}$-$\frac{1}{4}$=1$\frac{1}{12}$,…
请你根据以上三个等式提供的信息解答下列问题
①猜想:$\sqrt{1+\frac{1}{{7}^{2}}+\frac{1}{{8}^{2}}}$=1+$\frac{1}{7}$-$\frac{1}{8}$=1$\frac{1}{56}$;
②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{(n+1)^{2}}}$=1+$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{{n}^{2}+n+1}{{n}^{2}+n}$;
③应用:计算$\sqrt{\frac{82}{81}+\frac{1}{100}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,平面镜A与B之间夹角(∠AOB)为150°,光线经过平面镜A反射后射在平面镜B上,再反射出去.若∠1=∠2,则∠1=15度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.一水果商贩在批发市场按1.8元/千克批发了若干千克的苹果进城出售,为了方便,他带了一些零钱备用,他先按市场价出售一些后,又每千克下降0.5元将剩余的苹果降价售完,这时他手中的钱(含备用零钱)是450元.售出苹果x千克与他手中持有的钱数y元(含备用零钱)的关系如图所示,则这个水果商贩一共赚184元.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.单项式7h的次数是1次.

查看答案和解析>>

同步练习册答案