精英家教网 > 初中数学 > 题目详情
如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=
k
x
(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为(  )
分析:先根据反比例函数图象上点的坐标特征求出k=6,a=3,再利用待定系数法求出直线OM的解析式为y=
2
3
x,然后确定C点坐标,再根据三角形面积公式求解.
解答:解:把P(2,3),M(a,2)代入y=
k
x
得k=2×3=2a,解得k=6,a=3,
设直线OM的解析式为y=mx,
把M(3,2)代入得3m=2,解得m=
2
3

所以直线OM的解析式为y=
2
3
x,当x=2时,y=
2
3
×2=
4
3

所以C点坐标为(2,
4
3
),
所以△OAC的面积=
1
2
×2×
4
3
=
4
3

故选B.
点评:本题考查了反比例函数y=
k
x
(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=
kx
(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在第一象限内,正比例函数y1=k1x与反比例函数y2=
k2
x
的图象都经过A(1,4)点,当y1>y2>0时,x的范围是(  )
A、0<x<4B、0<x<1
C、x>0D、x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取一点A,过点A作AH⊥x轴于点H,得到△AOH.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形△POQ与△AOH全等,则符合条件的△AOH的面积是
3
2
3
,2
3
1
18
3
2
9
3
3
2
3
,2
3
1
18
3
2
9
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在第一象限内,双曲线y=
6
x
上有一动点B,过点B作直线BC∥y轴,交双曲线y=
1
x
于点C,作直线BA∥x轴,交双曲线y=
1
x
于点A,过点C作直线CD∥x轴,交双曲线y=
6
x
于点D,连接AC、BD.
(1)当B点的横坐标为2时,①求A、B、C、D四点的坐标;②求直线BD的解析式;
(2)B点在运动过程中,梯形ACDB的面积会不会变化?如会变化,请说明理由;如果不会变化,求出它的固定值.

查看答案和解析>>

同步练习册答案