精英家教网 > 初中数学 > 题目详情
如图,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴、y轴建立平面直角坐标系.F是BC边上的点,过F点的反比例函数y=
kx
(k>0)的图象与AC边交于点E.若将△CEF沿EF翻折后,点C恰好落在OB上的点M处,求点F的坐标.
分析:过点E作ED⊥OB于点D,根据折叠的性质得∠EMF=∠C=90°,EC=EM,CF=DF,易证Rt△MEM∽Rt△BMF;而EC=AC-AE=4-
k
3
,CF=BC-BF=3-
k
4
,得到EM=4-
k
3
,MF=3-
k
4
,即可得
EM
MF
的比值;故可得出EM:MB=ED:MF=4:3,而ED=3,从而求出BM,然后在Rt△MBF中利用勾股定理得到关于k的方程,解方程求出k的值即可得到F点的坐标.
解答:解:∵将△CEF沿EF对折后,C点恰好落在OB上的M点处,
∴∠EMF=∠C=90°,EC=EM,CF=MF,
∴∠MME+∠FMB=90°,
而EM⊥OB,
∴∠MME+∠MEM=90°,
∴∠MEM=∠FMB,
∴Rt△MEM∽Rt△BMF;
又∵EC=AC-AE=4-
k
3
,CF=BC-BF=3-
k
4

∴EM=4-
k
3
,MF=3-
k
4

EM
MF
=
4-
k
3
3-
k
4
=
4
3

∴ED:MB=EM:MF=4:3,而ED=3,
∴MB=
9
4

在Rt△DBF中,MF2=MB2+MF2,即(3-
k
4
2=(
9
4
2+(
k
4
2
解得k=
21
8

∴反比例函数解析式为y=
21
8x

把x=4代入得y=
21
32

∴F点的坐标为(4,
21
32
).
点评:本题考查的是反比例函数综合题,涉及到反比例函数的性质、反比例函数图象上点的坐标特点,折叠的性质、勾股定理以及三角形相似的判定与性质等知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:在矩形AOBC中,OB=3,OA=2.分别以OB、OA所在直线为x轴和y轴,建立如图所示的平精英家教网面直角坐标系.若点F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y=
kx
(k>0)的图象与边交于点E.
(1)直接写出线段AE、BF的长(用含k的代数式表示);
(2)记△OEF的面积为S.
①求出S与k的函数关系式并写出自变量k的取值范围;
②以OF为直径作⊙N,若点E恰好在⊙N上,请求出此时△OEF的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:在矩形AOBC中,OB=4,OA=3.分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数y=
k
x
的图象与AC边交于点E.现进行如下操作:将△CEF沿EF对折后,C点恰好落在OB上的D点处,过点E作EM⊥OB,垂足为M点.
(1)用含有k的代数式表示:E(
 
),F(
 
);
(2)求证:△MDE∽△FBD,并求
ED
DF
的值;
(3)求出F点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•萝岗区一模)在矩形AOBC中,OB=6,OA=4.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数y=
kx
(k>0)
的图象与AC边交于点E.
(1)设点E,F的坐标分别为:E(x1,y1),F(x2,y2),△AOE与△FOB的面积分别为S1,S2,求证:S1=S2
(2)若y2=1,求△OEF的面积;
(3)当点F在BC上移动时,△OEF与△ECF的面积差记为S,求当k为何值时,S有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝如图,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴、y轴建立平面直角坐标系.F是BC边上的点,过F点的反比例函数y=数学公式(k>0)的图象与AC边交于点E.若将△CEF沿EF翻折后,点C恰好落在OB上的点M处,求点F的坐标.

查看答案和解析>>

同步练习册答案