精英家教网 > 初中数学 > 题目详情

已知:边长为1的正方形ABCD中,M、N分别是BC、CD上的点.
(1)若MN=BM+ND,求证:∠MAN=45°;
(2)若△MNC得周长为2,求∠MAN的度数.

(1)证明:延长CB到E,使BE=DN,连接AE,
∵∠D=∠B=90°,AD=AB,DN=BE,
∴∠ABE=∠D=90°,
∴△ABE≌△ADN.
∴AE=AN,∠BAE=∠DAN,
∵MN=BM+ND=BM+BE=ME,AM=AM,
∴△AME≌△AMN(SSS),
∴∠EAM=∠NAM.
∴∠MAN=∠MAE=∠BAE+∠BAM=∠DAN+∠BAM,
∵∠EAN=90°,
∴∠MAN=45°.

(2)解:如图,延长CB到E,使BE=DN,连接AE,
∵∠D=∠B=90°,AD=AB,DN=BE,
∴∠ABE=∠D=90°,
∴△ABE≌△ADN.
∴AE=AN,∠BAE=∠DAN,
∴∠EAN=∠DAB=90°,
又MN=2-CN-CM=DN+BM=BE+BM=ME,
∴△AMN≌△AME,
∴∠MAN=∠MAE=45°.
分析:(1)延长CB到E,使BE=DN,连接AE,因为∠D=∠B,AD=AB,DN=BE,所以△ABM≌△ADN,则有∠BAM=∠DAN,AN=AE,又因为MN=BM+DN,BM=DN,所以△AEM≌△ANM,故∠EAM=∠NAM=∠EAN=90°,即∠MAN=45°;
(2)延长CB至E,使BE=DN,则Rt△ABE≌Rt△AND,故AE=AN,进而求证△AMN≌△AME,即可求得∠MAN=∠MAE=45°.
点评:此题把全等三角形的判定和性质结合求解,有利于培养学生综合运用数学知识的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC;
①将△ABC向x轴正方向平移5个单位得△A1B1C1
②再以O为旋转中心,将△A1B1C1旋转180°得△A2B2C2,画出平移和旋转后的图形,并标明对应字母.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:网格小正方形的边长为1,点A、点B在平面直角坐标系中的位置如图所示,将△AO精英家教网B先沿x轴正方向平移3个单位,再沿y轴负方向平移1个单位得到△A1O1B1
(1)画出△A1B1O1.写出两点坐标:A1
 
 
),B1
 
 
);
(2)求△A1O1B1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湖州)如图1,已知菱形ABCD的边长为2
3
,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(-
3
,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<
3

①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;
②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•揭西县模拟)如图,已知菱形ABCD的边长为2
3
,点A在x轴的负半轴上,点B在坐标原点,点D的坐标为(-
3
,3),抛物线y=ax2+b.(a≠0)经过AB、CD两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移,过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF,设菱形ABCD平移的时间为t秒(0<t<3),是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC
①将△ABC向x轴正方向平移5个单位得△A1B1C1
②以O为旋转中心,将△ABC逆时针旋转90°得△A2B2C2,并写出A2、B2、C2的坐标.

查看答案和解析>>

同步练习册答案