精英家教网 > 初中数学 > 题目详情

如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是


  1. A.
    ∠3=∠4
  2. B.
    ∠C=∠CDE
  3. C.
    ∠1=∠2
  4. D.
    ∠C+∠ADC=180°
C
分析:分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.
解答:A、∵∠3+∠4,
∴BC∥AD,本选项不合题意;
B、∵∠C=∠CDE,
∴BC∥AD,本选项不合题意;
C、∵∠1=∠2,
∴AB∥CD,本选项符合题意;
D、∵∠C+∠ADC=180°,
∴AD∥BC,本选项不符合题意.
故选:C.
点评:此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE精英家教网并延长,交AD的延长线于F,△ABC的外接圆⊙O交CF于点M.
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CM•CF;
(3)过点D作DG∥BE交EF于点G,过G作GH∥DE交DF于点H,则易知△DHG是等边三角形;设等边△ABC、△BDE、△DHG的面积分别为S1、S2、S3,试探究S1、S2、S3之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长交AD的延长线于点F,△ABC的外接圆⊙O交CF于点P.
(1)求证:BE是⊙O的切线;
(2)若CP=2,PF=8,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.
为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆O是Rt△ABC的外接圆,点D是劣弧AC上异于A,C点的一点,连接AD并延长交BC的延长线于点E.
(1)求证:△BDE∽△ACE;
(2)若AB=BE=10,CE=3,则AD的长是多少?
(3)若CD∥AB,过点A作AF∥BC交CD的延长线于点F,则
CF
CD
-
BC
CE
=
1
1
.(请直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,在△ABC中,D、E是BC边上的两点,请你从下面三项中选出两个作为条件,另一个作为结论,写出真命题,并加以证明.
①AB=AC;②AD=AE;③BD=CE.
(2)如图2,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
①求证:DE为⊙O的切线;
②若⊙O的半径为5,∠BAC=60°,求DE的长.

查看答案和解析>>

同步练习册答案