精英家教网 > 初中数学 > 题目详情
(2003•黄冈)已知:如图,等腰梯形ABCD中,AB=CD,AD∥BC,E是梯形外一点,且EA=ED,求证:EB=EC.

【答案】分析:由等腰梯形的性质知,AB=CD,∠BAD=∠CDA,由等边对等角得到∠EAD=∠EDA证得∠EAB=∠EDC,再由SAS证得△ABE≌△DCE?EB=EC
解答:证明:在等腰梯形ABCD中AB=CD,∴∠BAD=∠CDA.
∵EA=ED,
∴∠EAD=∠EDA.
∴∠EAB=∠EDC.(2分)
在△ABE和△DCE中

∴△ABE≌△DCE.(5分)
∴EB=EC.(6分)
点评:本题主要考查了等腰梯形的性质及全等三角形的判定的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2003•黄冈)已知经过A、B、C三点的二次函数图象如图所示.
(1)求二次函数的解析式及抛物线顶点M的坐标;
(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t取值范围;
(3)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市白云区中考数学一模试卷(解析版) 题型:解答题

(2003•黄冈)已知经过A、B、C三点的二次函数图象如图所示.
(1)求二次函数的解析式及抛物线顶点M的坐标;
(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t取值范围;
(3)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:2003年湖北省黄冈市中考数学试卷(解析版) 题型:解答题

(2003•黄冈)已知经过A、B、C三点的二次函数图象如图所示.
(1)求二次函数的解析式及抛物线顶点M的坐标;
(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t取值范围;
(3)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:2003年湖北省黄冈市中考数学试卷(解析版) 题型:填空题

(2003•黄冈)已知x=sin60°,则=   

查看答案和解析>>

同步练习册答案