精英家教网 > 初中数学 > 题目详情

在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为


  1. A.
    l<AB<9
  2. B.
    3<AB<13
  3. C.
    5<AB<13
  4. D.
    9<AB<13
B
分析:作辅助线(延长AD至E,使DE=AD=4,连接BE)构建全等三角形△BDE≌△ADC(SAS),然后由全等三角形的对应边相等知BE=AC=5;而三角形的两边之和大于第三边、两边之差小于第三边,据此可以求得AB的取值范围.
解答:解:延长AD至E,使DE=AD=4,连接BE.则AE=8,
∵AD是边BC上的中线,D是中点,
∴BD=CD;
又∵DE=AD,∠BDE=∠ADC,∴△BDE≌△ADC,
∴BE=AC=5;
由三角形三边关系,得AE-BE<AB<AE+BE,
即8-5<AB<8+5,
∴3<AB<13;
故选B.
点评:本题考查了全等三角形的判定与性质.解答该题时,围绕结论寻找全等三角形,运用全等三角形的性质判定对应线段相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案