A
分析:认真观察图形,四边形ABCD的面积=S
△ABD+S
△BCD.根据题意易求BD,OA,OC.
解答:
解:∵对角线AC是BD的垂直平分线,∴AD=AB=2
.
在△AOD中,∠ADB=30°,∠AOD=90°,
∴OA=
AD=
.
∴OD=3,BD=6.
在△COD中,∠CDB=45°,∠COD=90°,
∴OC=OD=3.
∴四边形ABCD的面积=S
△ABD+S
△BCD=
BD•OA+
BD•OC=9+3
.
故选A
点评:此题主要考查线段的垂直平分线的性质和直角三角形的性质;求得OD=3是解答本题的关键.