精英家教网 > 初中数学 > 题目详情
(2012•菏泽)(1)如图1,∠DAB=∠CAE,请补充一个条件:
∠D=∠B或∠AED=∠C.
∠D=∠B或∠AED=∠C.
,使△ABC∽△ADE.
(2)如图2,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.
分析:(1)根据相似三角形的判定定理再补充一个相等的角即可;
(2)先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.
解答:解:(1)∠D=∠B或∠AED=∠C.

(2)依题意可知,折痕AD是四边形OAED的对称轴,
∴在Rt△ABE中,AE=AO=10,AB=8,BE=
AE2-AB2
=
102-82
=6,
∴CE=4,
∴E(4,8).
在Rt△DCE中,DC2+CE2=DE2
又∵DE=OD,
设OD=x=DE,
∴(8-x)2+42=x2
∴OD=5,
解得:x=5,
∴D(0,5).
点评:本题考查的是图形的翻折变换、勾股定理及相似三角形的判定,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•菏泽)如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.
(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;
(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•菏泽)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,
则63“分裂”出的奇数中,最大的奇数是
41
41

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•菏泽)反比例函数y=
2
x
的两个点(x1,y1)、(x2,y2),且x1>x2,则下式关系成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•菏泽)点P(-2,1)在平面直角坐标系中所在的象限是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•菏泽)某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图.根据图中所给出的信息解答下列问题:

(1)二等奖所占的比例是多少?
(2)这次数学知识竞赛获得二等奖的人数是多少?
(3)请将条形统计图补充完整;
(4)若给所有参赛学生每人发一张卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出的卡片上是写有一等奖学生名字的概率.

查看答案和解析>>

同步练习册答案