精英家教网 > 初中数学 > 题目详情
如图,已知四边形AOBE和四边形CBFD均为正方形,反比例函数y=
4
x
的图象经过D、E两点,则点E的坐标是______;点D的坐标是______;△DOE的面积为______.
∵四边形AOBE,∴AO=AE,
设AO=a,则点E为(a,a)
4
a
=a,整理得a2=4,
解得a=2,a=-2(舍去),
所以点E的坐标是(2,2),
设正方形CBFD的边长为b,则BF=b,CO=2+b,
所以点D为(b,2+b),
4
b
=2+b,整理得b2+2b-4=0,
解得b=
5
-1,b=-
5
-1(舍去),
所以点D的坐标是(
5
-1,
5
+1);

设直线OD与BE的交点为G,则点G的纵坐标为2,
直线OD的解析式为y=
5
+1
5
-1
x,即y=
3+
5
2
x,
3+
5
2
x=2,
解得x=3-
5

∴EG=2-(3-
5
)=
5
-1,
所以S△DOE=S△OEG+S△DEG=
1
2
×EG×OB+
1
2
×EG×BC
=
1
2
×(
5
-1)×2+
1
2
×(
5
-1)×(
5
-1)
=2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,双曲线y=
k
x
(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若梯形ODBC的面积为3,则双曲线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正比例函数y=
1
2
x
的图象与反比例函数y=
k
x
(k≠0)
在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B(a,b)为反比例函数在第一象限图象上的点,且b=2a,试探究在x轴上是否存在点P,使△PAB周长最小?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-1).
(1)求反比例函数的解析式及m、n的值;
(2)求直线y=ax+b的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,函数y=
k
x
的图象过点A,则k=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,点A(-3,4)关于y轴的对称点为点B,连接AB,反比例函数y=
k
x
(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.
(1)求k的值;
(2)判断△QOC与△POD的面积是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,A、M是反比例函数图象上的两点,过点M作直线MBx轴,交y轴于点B;过点A作直线ACy轴交x轴于点C,交直线MB于点D.BM:DM=8:9,当四边形OADM的面积为
27
4
时,k=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二氧化碳的密度ρ(kg/m3)关于其体积V(m3)的函数关系式如图所示,那么函数关系式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=kx-2分别交x轴、y轴于点A、B,点P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数y=
3
x
的图象于点Q,若PQ=
5
2
,求k的值.

查看答案和解析>>

同步练习册答案