分析 ①正确,根据相似比为1的两个三角形全等即可判断.
②正确.写出逆命题即可判断.
③正确.根据方程组有无数多组解的条件即可判断.
④正确.首先提公因式,再利用十字相乘法即可判断.
解答 解:①正确.对应角相等的两个三角形相似,又因为面积相等,所以相似比为1,所以两个三角形全等,故正确.
②正确.理由:“若x2-x=0,则x=0”的逆命题为x=0,则x2-x=0,故正确.
③正确.理由:∵关于x、y的方程组$\left\{\begin{array}{l}{-x+y-a=0}\\{bx-y+1=0}\end{array}\right.$有无数多组解,
∴$\frac{-1}{b}$=$\frac{1}{-1}$=$\frac{-a}{1}$,
∴a=b=1,故正确.
④正确.理由:5xy+3y-2x2y=-y(2x2-5x-3)=-y(2x+1)(x-3),故正确.
故答案为①②③④.
点评 本题考查命题由定理,相似三角形的定义.全等三角形的定义、方程组的解等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com