精英家教网 > 初中数学 > 题目详情
如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是
10<a≤10
2
10<a≤10
2
分析:根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+
a2-100
2
=0中,最后由根的判别式求得a的取值范围.
解答:解:∵M是AB的中点,MC=MA=5,
∴△ABC为直角三角形,AB=10;
∴a=AC+BC>AB=10;
令AC=x、BC=y.
x+y=a
x2+y2=100

∴xy=
a2-100
2

∴x、y是一元二次方程z2-az+
a2-100
2
=0的两个实根,
∴△=a2-4×
a2-100
2
≥0,即a≤10
2
.综上所述,a的取值范围是10<a≤10
2

故答案为:10<a≤10
2
点评:本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,Rt△ABC的两条直角边AC=3,BC=4,点P是边BC上的一动点(P不与B重合),以P为圆心作⊙P与BA相切于点M.设CP=x,⊙P的半径为y.
(1)求证:△BPM∽△BAC;
(2)求y与x的函数关系式,并确定当x在什么范围内取值时,⊙P与AC所在直线相离;
(3)当点P从点C向点B移动时,是否存在这样的⊙P,使得它与△ABC的外接圆相内切?若存在,求出x、y的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC的两条直角边AB=4cm,AC=3cm,点D沿AB从A向B运动,速度是1cm/秒,同时,精英家教网点E沿BC从B向C运动,速度为2cm/秒.动点E到达点C时运动终止.连接DE、CD、AE.
(1)当动点运动几秒时,△BDE与△ABC相似?
(2)设动点运动t秒时△ADE的面积为s,求s与t的函数解析式;
(3)在运动过程中是否存在某一时刻t,使CD⊥DE?若存在,求出时刻t;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年福建省三明市尤溪一中高一保送生数学模拟卷(一)(解析版) 题型:解答题

如图,Rt△ABC的两条直角边AC=3,BC=4,点P是边BC上的一动点(P不与B重合),以P为圆心作⊙P与BA相切于点M.设CP=x,⊙P的半径为y.
(1)求证:△BPM∽△BAC;
(2)求y与x的函数关系式,并确定当x在什么范围内取值时,⊙P与AC所在直线相离;
(3)当点P从点C向点B移动时,是否存在这样的⊙P,使得它与△ABC的外接圆相内切?若存在,求出x、y的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省温州市永嘉县中考数学二模试卷(解析版) 题型:解答题

(2009•永嘉县二模)如图,Rt△ABC的两条直角边AC=3,BC=4,点P是边BC上的一动点(P不与B重合),以P为圆心作⊙P与BA相切于点M.设CP=x,⊙P的半径为y.
(1)求证:△BPM∽△BAC;
(2)求y与x的函数关系式,并确定当x在什么范围内取值时,⊙P与AC所在直线相离;
(3)当点P从点C向点B移动时,是否存在这样的⊙P,使得它与△ABC的外接圆相内切?若存在,求出x、y的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年福建省三明市大田二中自主招生数学模拟试卷(3)(解析版) 题型:解答题

(2009•永嘉县二模)如图,Rt△ABC的两条直角边AC=3,BC=4,点P是边BC上的一动点(P不与B重合),以P为圆心作⊙P与BA相切于点M.设CP=x,⊙P的半径为y.
(1)求证:△BPM∽△BAC;
(2)求y与x的函数关系式,并确定当x在什么范围内取值时,⊙P与AC所在直线相离;
(3)当点P从点C向点B移动时,是否存在这样的⊙P,使得它与△ABC的外接圆相内切?若存在,求出x、y的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案