精英家教网 > 初中数学 > 题目详情
如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BFAC交CE的延长线于点F,求证:AB垂直平分DF.
精英家教网

精英家教网
证明:连接DF,
∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,
∴∠BCE=∠CAE.
∵AC⊥BC,BFAC.
∴BF⊥BC.
∴∠ACD=∠CBF=90°,
∵AC=CB,
∴△ACD≌△CBF.∴CD=BF.
∵CD=BD=
1
2
BC,∴BF=BD.
∴△BFD为等腰直角三角形.
∵∠ACB=90°,CA=CB,
∴∠ABC=45°.
∵∠FBD=90°,
∴∠ABF=45°.
∴∠ABC=∠ABF,即BA是∠FBD的平分线.
∴BA是FD边上的高线,BA又是边FD的中线,
即AB垂直平分DF.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,则∠DCB=
55
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂线l分别交AB、AC及BC的延长线于点D、E、F,连接BE. 求证:EF=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C为圆心,R为半径所得的圆与斜边AB只有一个公共点,则R的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足为E,求证:四边形CFED是菱形.

查看答案和解析>>

同步练习册答案