精英家教网 > 初中数学 > 题目详情

如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=10,AC=8.
(1)如果OE⊥AC,垂足为E,求OE的长;
(2)求tan∠ADC的值.

解:(1)∵AB是直径,
∴∠ACB=90°,
由勾股定理得:
∵OE⊥AC,∠ACB=90°,
∴OE∥BC,
∵AO=BO,
∴AE=CE,
∴OE=

(2)∵∠ADC=∠B,
∴tan∠ADC=tan∠B=
分析:(1)求出BC长,求出OE是△ACB的中位线,根据三角形的中位线定理求出即可;
(2)求出tanB即可求出答案.
点评:本题考查了圆周角定理,勾股定理,锐角三角函数的定义等知识点的应用,关键是求出OE是△ACB的中位线和得出tan∠ADC=tanB.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案