已知:矩形ABCD中,M为BC边上一点, AB=BM=10,MC=14,如图1,正方形EFGH的顶点E和点B重合,点F、G、H分别在边AB、AM、BC上.如图2,P为对角线AC上一动点,正方形EFGH从图1的位置出发,以每秒1个单位的速度沿BC向点C匀速移动;同时,点P从C点出发,以每秒1个单位的速度沿CA向点A匀速移动.当点F到达线段AC上时,正方形EFGH和点P同时停止运动.设运动时间为t秒,解答下列问题:
(1)在整个运动过程中,当点F落在线段AM上和点G落在线段AC上时,分别求出对应t的值;
(2)在整个运动过程中,设正方形
与
重叠部分面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在整个运动过程中,是否存在点P,使
是以DG为腰的等腰三角形?若存在,求出t的值;若不存在,说明理由.
![]()
(1)5,7;(2)答案见解析;(3)
.
【解析】
试题分析:(1)根据三角形的中位线易求t的值;
(2)分5种位置关系分别讨论;
(3)可以建立以点B为原点的直角坐标系,表示出这个三角形三个顶点的距离,再用两点间的距离公式表示出各边的长度,然后分两种情况讨论组成关于t的两个方程求解即可。
试题解析:(1)∵
为正方形
∴
∴
∴
的中点
∴
秒
又∵当
落在
上时,所走路程为
的中位线的长.
又∵
∴
∴
秒
(2)
当
时, ![]()
当
时, ![]()
时, ![]()
时, ![]()
![]()
(3)∵![]()
![]()
![]()
![]()
![]()
![]()
![]()
①当
时,
为等腰三角形
∴
∴
秒
∵
∴存在点
,使
为等腰三角形
②当
时,
为等腰三角形
∴![]()
∴
∴
(舍去),
(舍去)
综上,存在点
,当
秒时,
是以DG为腰的等腰三角形.
考点:1.三角形的中位线;2.二次函数;3.等腰三角形的性质.
科目:初中数学 来源:2013-2014学年重庆市万州区岩口复兴学校九年级下学期期中命题四数学试卷(解析版) 题型:填空题
如图,
ABCD的顶点A、B的坐标分别是A(-1,0)B(0,-2),顶点C、D在双曲线
上,边AD交y轴于点E,且
ABCD的面积是△ABE面积的8倍,则k= .
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年重庆市万州区岩口复兴学校九年级下学期期中命题三数学试卷(解析版) 题型:选择题
如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣
;④3≤n≤4中,正确的是( )。
![]()
A.①② B.③④ C.①④ D.①③
查看答案和解析>>
科目:初中数学 来源:2013-2014学年重庆市万州区岩口复兴学校九年级下学期期中命题三数学试卷(解析版) 题型:选择题
据报道,重庆市九龙坡区2013年GDP总量约为770亿元,用科学记数法表示这一数据应为 ( )元。
A.
元 B.
元 C.
元 D.
元
查看答案和解析>>
科目:初中数学 来源:2013-2014学年重庆市九年级下学期期中考试数学试卷(解析版) 题型:解答题
重庆一中注重对学生的综合素质培养,每期都将开展丰富多彩的课外活动.3月中旬,在满园的樱花树下,初一、二年级举行了“让我们一起静听花开的声音”大型诗歌朗诵会,年级各班级积极参与.学校为鼓励同学们的积极性,对参与班级进行了奖励,分设一、二、三、四等级奖励,在给予精神奖励的同时也给与一定的物质奖励,为各个等级购买了一个相应的奖品.根据获奖情况,某初三同学绘制出如下两幅不完整的统计图,四个等级奖励的奖品价格用表格表示.
等级 | 价格(元/个) |
一等 | 100 |
二等 | 60 |
三等 | 40 |
四等 | 20 |
![]()
(1)两年级共有 个班级参加此次活动,其中获得二等奖的班级有 个,请补全条形统计图;
(2)在扇形统计图中,三等奖所在扇形的圆心角的度数是 度,这些奖品的平均价格是 元;
(3)在此次活动中,获得一等奖的班级中有两个班级来自初一年级,获得二等奖的班级中也只有两个班级来自初一年级.学校准备从获得一、二等奖的班级中各选出一个班级代表学校参加区级比赛,请你用画树状图或列表格的方法求出所选班级来自同一年级的概率.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年辽宁省盘锦市中考第一次模拟考试数学试卷(解析版) 题型:选择题
如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()
![]()
A.矩形 B.菱形 C.正方形 D.梯形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com