分析 求出BE的长,再根据两组对边分别平行的四边形是平行四边形求出四边形EFCH平行四边形,根据平行四边形的对边相等可得EF=CH,再根据正方形的性质可得AB=BC,AE=EF,然后求出BH=BE即可得解.
解答 解:∵AB=4,AE=1,
∴BE=AB-AE=4-1=3,
∵四边形ABCD,AEFG都是正方形,
∴AD∥EF∥BC,
又∵EH∥FC,
∴四边形EFCH平行四边形,
∴EF=CH,
∵四边形ABCD,AEFG都是正方形,
∴AB=BC,AE=EF,
∴AB-AE=BC-CH,
∴BE=BH=3.
故答案为:3.
点评 本题考查了正方形的性质,平行四边形的判定与性质,熟记性质并求出四边形EFCH平行四边形是解题的关键,也是本题的难点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4小时,5小时 | B. | 5小时,4小时 | C. | 4小时,4小时 | D. | 5小时,5小时 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y=20-2x(0<x<20) | B. | y=20-2x(0<x<10) | C. | y=20-2x(5<x<10) | D. | y=$\frac{20-x}{2}$(5<x<10) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com