精英家教网 > 初中数学 > 题目详情
在10×10的正方形网格中,小正方形的边长为1,建立如图所示的直角坐标系:
(1)画出与△ABC关于y轴对称的△A′B′C′;
(2)以O为旋转中心,将△A′B′C′顺时针旋转90°得到△A″B″C″,请画出△A″B″C″;
(3)写出A″的坐标;
(4)计算A′旋转到A″所经过的路线长.

【答案】分析:(1)根据轴对称变换:由一个平面图形得到它的轴对称图形叫做轴对称变换.
(2)根据旋转变换的定义:把一个图形绕着某一点O按照一定的方向转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的方向叫做旋转方向,转动的角度叫做旋转角.旋转的“三要素”:旋转中心、旋转方向、旋转角度,缺一不可.
(3)根据平面直角坐标系写出A″的坐标.
(4)根据勾股定理计算OA′的长,再根据弧长公式求出A′旋转到A″所经过的路线长.
解答:解:(1)如图所示.

(2)如图所示.

(3)A″(4,-2)

(4)A′A″=5π
点评:成轴对称的两个图形可以看作是其中一个图形由另一个图形经过轴对称变换后得到的;一个轴对称图形也可以看作是由它的一部分图形,经过轴对称变换形成的.旋转的性质:(1)旋转前后的图形是全等形;(2)旋转前后的对应点与旋转中心组成的角都相等,都为旋转角;(3)对应点到旋转中心的距离相等.
练习册系列答案
相关习题

科目:初中数学 来源:2013年浙江省湖州市中考数学试卷(解析版) 题型:选择题

如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中数学 来源:2012年山东省德州市育英中学中考数学模拟试卷(三)(解析版) 题型:解答题

(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线;(保留作图痕迹,不要求写作法)
(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连接A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是______;
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法),此时,点P的坐标为______,最短周长为______

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省沈阳市和平区中考数学监测卷(二)(解析版) 题型:解答题

如图,在10×10的正方形网格中△ABC与△DEF的顶点,都在边长为1 的小正方形顶点上,且点A与原点重合.
(1)画出△ABC关于点B为对称中心的中心对称图形△A′BC′,画出将△DEF向右平移6个单位且向上平移2个单位的△D′E′F′;
(2)求经过A、B、C三点的二次函数关系式,并求出顶点坐标.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市中考数学模拟试卷(解析版) 题型:解答题

(2010•扬州二模)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线;(保留作图痕迹,不要求写作法)
(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连接A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是______;
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法),此时,点P的坐标为______,最短周长为______

查看答案和解析>>

科目:初中数学 来源:2010年江苏省无锡市北片区中考数学一模试卷(解析版) 题型:解答题

(2010•扬州二模)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线;(保留作图痕迹,不要求写作法)
(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连接A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是______;
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法),此时,点P的坐标为______,最短周长为______

查看答案和解析>>

同步练习册答案