精英家教网 > 初中数学 > 题目详情

如图,点A,B,C,D都在⊙O上,数学公式的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=________°.

48
分析:在等腰△OAC和△OCD中,根据等腰三角形的两个底角相等的性质求得∠OCD=∠ODC、∠CAO=∠OCA,所以由三角形的内角和求得∠OCD=48°;然后根据角平分线的性质求得∴∠OCA=∠ACD=24°;最后由圆周角定理知:∠ABD=∠AOD,∠OCA=∠AOD.所以∠ABD=∠CAO,进而求得∠ABD+∠CAO=48°.
解答:∵圆心角的度数和它们对的弧的度数相等,
的度数等于84°,即∠COD=84°;
在△COD中,OC=OD(⊙O的半径),
∴∠OCD=∠ODC(等边对等角);
又∵∠COD+∠OCD+∠ODC=180°,
∴∠OCD=48°;
而CA是∠OCD的平分线,
∴∠OCA=∠ACD,
∴∠OCA=∠ACD=24°;
在△AOC中,OA=OC(⊙O的半径),
∴∠CAO=∠OCA(等边对等角);
∵∠ABD=∠AOD(同弧所对的圆周角是所对的圆心角的一半),
∠DCA=∠AOD(同弧所对的圆周角是所对的圆心角的一半),
∴∠ABD=∠CAD,
∴∠ABD+∠CAO=48°;
故答案为:48°.
点评:本题综合考查了圆周角定理和圆心角、弧、弦的关系.解答此题的关键点是利用“圆心角的度数和它们对的弧的度数相等”求得∠COD=84°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点A、B在数轴上,它们所对应的数分别是-4、
2x+23x-1
,且点A、B关于原点O对称,求x的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A为⊙O直径CB延长线上一点,过点A作⊙O的切线AD,切点为D,过点D作DE⊥AC,垂足为F,连接精英家教网BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,试求CE的长.
(3)在(2)的条件下,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A的坐标为(2
2
,0
),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(  )
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B在线段MN上,则图中共有
 
条线段.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点O到直线l的距离为3,如果以点O为圆心的圆上只有两点到直线l的距离为1,则该圆的半径r的取值范围是
2<r<4

查看答案和解析>>

同步练习册答案