精英家教网 > 初中数学 > 题目详情

如图,二次函数y=x2+bx+c的图象与x轴相交于A,B,点A在原点左边,点B在原点右边,点P(1,m)(m>0)在抛物线上,AB=2,tan∠PAB=数学公式
(1)求m的值;
(2)求二次函数解析式.

解:(1)令y=0,得:x2+bx+c=0,
根据韦达定理(设x1>x2)得:x1+x2=-b,x1x2=c,
∴AB2=(x1-x22=[(x1+x22-4x1x2]=b2-4c=4,
∴b2-4c=4①,
解方程x2+bx+c=0得:x==
x1=,x2=
∵P的横坐标为1,
∴m=1+b+c,
tan∠PAB==
∴5c+4b+1=0②,
由①②得:b=或b=-4,
由图象得:a>0,b>0,c<0,
∴b=
∴c=-
∴m=1+b+c=1+-=

(2)∴二次函数解析式为:y=x2+x-
分析:(1)题目中给出了比例关系,只需要作出辅助线,利用直角三角形三角函数关系性质建立等量关系,解出m的值.
(2)求出m的值以后,可以知此函数图象过点A、P,利用这两点结合原函数解出函数关系式.
点评:本题主要考查了二次函数与三角形性质的结合,利用直角三角形的性质建立等量关系,寻找解题的突破口.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案