精英家教网 > 初中数学 > 题目详情
17.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:
①∠EBG=45°;
②AG+DF=FG;
③△DEF∽△ABG;
④S△ABG=1.5S△FGH
其中正确的是①②④.(把所有正确结论的序号都选上)

分析 利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=$\frac{1}{2}$∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②进行判断;接着证明△ABF∽△DFE,利用相似比得到$\frac{DE}{DF}$=$\frac{AF}{AB}$=$\frac{4}{3}$,而$\frac{AB}{AG}$=$\frac{6}{3}$=2,所以$\frac{AB}{AG}$≠$\frac{DE}{DF}$,所以△DEF与△ABG不相似,于是可对③进行判断;分别计算S△ABG和S△GHF可对④进行判断.

解答 解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,
∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,
∴∠EBG=∠EBF+∠FBG=$\frac{1}{2}$∠CBF+$\frac{1}{2}$∠ABF=$\frac{1}{2}$∠ABC=45°,所以①正确;
在Rt△ABF中,AF=$\sqrt{B{F}^{2}-A{B}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∴DF=AD-AF=10-8=2,
设AG=x,则GH=x,GF=8-x,HF=BF-BH=10-6=4,
在Rt△GFH中,∵GH2+HF2=GF2
∴x2+42=(8-x)2,解得x=3,
∴GF=5,
∴AG+DF=FG=5,所以②正确;
∵△BCE沿BE折叠,点C恰落在边AD上的点F处
∴∠BFE=∠C=90°,
∴∠EFD+∠AFB=90°,
而∠AFB+∠ABF=90°,
∴∠ABF=∠EFD,
∴△ABF∽△DFE,
∴$\frac{AB}{DF}$=$\frac{AF}{DE}$,
∴$\frac{DE}{DF}$=$\frac{AF}{AB}$=$\frac{8}{6}$=$\frac{4}{3}$,
而$\frac{AB}{AG}$=$\frac{6}{3}$=2,
∴$\frac{AB}{AG}$≠$\frac{DE}{DF}$,
∴△DEF与△ABG不相似;所以③错误.
∵S△ABG=$\frac{1}{2}$×6×3=9,S△GHF=$\frac{1}{2}$×3×4=6,
∴S△ABG=1.5S△FGH.所以④正确.
故答案为①②④.

点评 本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如果a、b、c是非零有理数,且a+b+c=0,那么$\frac{a}{|a|}$+$\frac{b}{|b|}$+$\frac{c}{|c|}$+$\frac{abc}{|abc|}$的所有可能的值为0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.对于每一象限内的双曲线y=$\frac{m+2}{x}$,y都随x的增大而增大,则m的取值范围是(  )
A.m>-2B.m>2C.m<-2D.m<2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.2的相反数是(  )
A.-2B.2C.±2D.0.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,△ABC中,AD是中线,BC=10,∠B=∠DAC,则线段AC的长为(  )
A.4B.5C.5$\sqrt{2}$D.5$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,一次函数y=kx+b的图象分别与反比例函数y=$\frac{a}{x}$的图象在第一象限交于点A(8,6),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=$\frac{a}{x}$的表达式;
(2)已知点C(0,10),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.有一个如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm,在水面上紧贴内壁G处有一块面包屑,G在水面线EF上,且EG=60cm,一只蚂蚁想从鱼缸外的A点沿鱼缸壁爬进鱼缸内的G处面包屑.
(1)该蚂蚁应该沿怎样的路线爬行才能使路程最短呢?请你画出它爬行的路线,并用箭头标注;
(2)求蚂蚁爬行的最短路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.若x=-3,则|-$\sqrt{(1+x)^{2}}$|等于(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.从-1,0,1,2这4个数中,随机抽取一个数记为a,放回并混在一起,再随机抽取一个数记为b,则使得关于x的一次函数y=ax+b不经过第一象限的概率为$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案