精英家教网 > 初中数学 > 题目详情
(2008•淮安)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=,DE=3.
求:(1)⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.

【答案】分析:(1)半径OD⊥BC,所以由垂径定理知:CE=BE,在直角△OCE中,根据勾股定理就可以求出OC的值;
(2)根据AB是⊙O的直径,得到∠ACB=90°,因而在直角三角形ABC中根据勾股定理得到AC的长;
(3)阴影部分的面积就是扇形OCA的面积减去△OAC的面积.
解答:解:(1)∵半径OD⊥BC,
∴CE=BE,
∵BC=6
∴CE=3
设OC=x,在直角三角形OCE中,OC2=CE2+OE2
∴x2=(32+(x-3)2
∴x=6
即半径OC=6;(4分)

(2)∵AB为直径,
∴∠ACB=90°,AB=12,
又∵BC=6
∴AC2=AB2-BC2=36,
∴AC=6;(7分)

(3)∵OA=OC=AC=6,
∴∠AOC=60°,
∴S=S-S△OAC=-
=6π-9.(10分)
点评:阴影部分的面积可以看作是扇形的面积减去三角形的面积,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2008•淮安)如图所示,在平面直角坐标系中,二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C,连接BP并延长交y轴于点D.
(1)写出点P的坐标;
(2)连接AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;
(3)在(2)的条件下,连接BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S,选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大写出最大值.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省淮安市中考数学试卷(解析版) 题型:解答题

(2008•淮安)如图所示,在平面直角坐标系中,二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C,连接BP并延长交y轴于点D.
(1)写出点P的坐标;
(2)连接AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;
(3)在(2)的条件下,连接BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S,选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大写出最大值.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省淮安市中考数学试卷(解析版) 题型:解答题

(2008•淮安)如图所示的网格中有A、B、C三点.
(1)请你以网格线所在直线为坐标轴建立平面直角坐标系,使A、B两点的坐标分别为A(2,-4)、B(4,-2),则C点的坐标是______;
(2)连接AB、BC、CA,先以坐标原点O为位似中心,按比例尺1﹕2在y轴的左侧画出△ABC缩小后的△A′B′C′,再写出点C对应点C′的坐标______.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省淮安市中考数学试卷(解析版) 题型:选择题

(2008•淮安)如图,在Rt△ABC中,∠C=90°,AC=1,BC=2,以边BC所在直线为轴,把△ABC旋转一周,得到的几何体的侧面积是( )

A.π
B.2π
C.π
D.π

查看答案和解析>>

同步练习册答案