精英家教网 > 初中数学 > 题目详情
21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.
分析:(1)根据等边三角形三线合一可知AD⊥BC,且BD=CD,可知直线AD是线段BC的垂直平分线,
(2)根据AD⊥BC,再根据已知条件可知∠ADE=∠AED,即可得出△ADE是等腰三角形.
解答:解:(1)∵在等边△ABC中,AD是∠BAC的平分线,
∴AD⊥BC,且BD=CD,
∴直线AD是线段BC的垂直平分线,
(2)△ADE是等腰三角形,
∵AD⊥BC,
∴∠ADC=90°,
又∵∠EDC=15°,
∴∠ADE=∠ADC-∠EDC=90°-15°=75°,
在△ADE中,∠AED=180°-∠ADE-∠DAC=180°-75°-30°=75°,
∴∠ADE=∠AED,
∴△ADE是等腰三角形.
点评:本题主要考查了等边三角形三线合一,垂直平分线的性质以及等腰三角形的判定,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案