精英家教网 > 初中数学 > 题目详情
(2013•兰州)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为(  )
分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=
1
2
AB,设OA=r,则OD=r-2,在Rt△AOD中,利用勾股定理即可求r的值.
解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,
∵OD⊥AB,
∴AD=
1
2
AB=
1
2
×8=4cm,
设OA=r,则OD=r-2,
在Rt△AOD中,OA2=OD2+AD2,即r2=(r-2)2+42
解得r=5cm.
故选C.
点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是
144
144
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=
1
2
x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是
-2<k<
1
2
-2<k<
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)

查看答案和解析>>

同步练习册答案