精英家教网 > 初中数学 > 题目详情
精英家教网如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为(  )
①OH=
1
2
BF;②∠CHF=45°;③GH=
1
4
BC;④DH2=HE•HB.
A、1个B、2个C、3个D、4个
分析:根据已知对各个结论进行分析,从而确定正确的个数.①作EJ⊥BD于J,连接EF,由全等三角形的判定定理可得△DJE≌△ECF,再由平行线的性质得出OH是△DBF的中位线即可得出结论;
②根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论;
③根据OH是△BFD的中位线,得出GH=
1
2
CF,由GH<
1
4
BC,可得出结论;
④由相似三角形的判定定理得出△DHG∽△BDH,根据相似三角形的对应边成比例即可得出结论.
解答:精英家教网解:作EJ⊥BD于J,连接EF
①∵BE平分∠DBC
∴EC=EJ,
∴△DJE≌△ECF
∴DE=FE
∴∠HEF=45°+22.5°=67.5°
∴∠HFE=
45°
2
=22.5°
∴∠EHF=180°-67.5°-22.5°=90°
∵DH=HF,OH是△DBF的中位线
∴OH∥BF
∴OH=
1
2
BF
②∵四边形ABCD是正方形,BE是∠DBC的平分线,
∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,
∵CE=CF,
∴Rt△BCE≌Rt△DCF,
∴∠EBC=∠CDF=22.5°,
∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,
∵OH是△DBF的中位线,CD⊥AF,
∴OH是CD的垂直平分线,
∴DH=CH,
∴∠CDF=∠DCH=22.5°,
∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,
∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故②正确;
③∵OH是△BFD的中位线,
∴DG=CG=
1
2
BC,GH=
1
2
CF,
∵CE=CF,
∴GH=
1
2
CF=
1
2
CE
∵CE<CG=
1
2
BC,
∴GH<
1
4
BC,故此结论不成立;
④∵∠DBE=45°,BE是∠DBF的平分线,
∴∠DBH=22.5°,
由②知∠HBC=∠CDF=22.5°,
∴∠DBH=∠CDF,
∵∠BHD=∠BHD,
∴△DHE∽△BHD,
DH
BH
=
HE
DH

∴DH=HE•HB,故④成立;
所以①②④正确.
故选C.
点评:解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点F为正方形内一点,在正方形外有一点E,满足∠ABF=∠CBE,BF=BE.
(1)求证:△ABF≌△CBE;
(2)连接EF,试判断△BEF的形状,并证明你的结论.
(3)当CF:BF=1:2,∠BFC=135°时,求cos∠FCE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,正方形OABC的面积是16.
(1)求正方形OABC的对角线的交点D的坐标;
精英家教网
(2)直线y=2x+8交x轴于E,交y轴于F,它沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的
值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
精英家教网
(3)如图,点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,给出下列两个结论:①
PC
BM
的值不变;②
PC
AM
的值不变;其中有且只有一个结论是正确的,请你选出正确的结论,予以证明并求其值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论为(  )  
①BF=2OH;②∠CHF=45°;③BC=4GH;④DH2=HE•HB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点F为正方形ABCD的边CD的中点,E为BC上一点,M为EF上一点,且D、M关于AF对称,B、M关于AE对称,∠CFE的平分线交AE的延长线于G,交BC于N,连CG,下列结论:①△AFG为等腰直角三角形;②CG=2
2
CN;③S△CEF=S△ABE,其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点E为正方形ABCD的边CD上一点,AB=10,AE=4.△DAE旋转后能与△DCF重合.
(1)旋转中心是点
D
D
,旋转了
90
90
度.
(2)连接EF,则△DEF是
等腰直角
等腰直角
三角形.
(3)四边形DEBF的周长和面积分别是
20+4
29
20+4
29
100
100

查看答案和解析>>

同步练习册答案