精英家教网 > 初中数学 > 题目详情

如图,BC是⊙O的直径,半径为R,A为半圆上一点,I为△ABC的内心,延长AI交BC于D点,交⊙0于点E,作IF⊥BC,连接AO,BI.下列结论:①AB+AC=BC+2IF;②4∠AIB-∠BOA=360°;③EB=EI;④数学公式为定值,其中正确的结论有


  1. A.
    ①③④
  2. B.
    ①②③
  3. C.
    ①②③④
  4. D.
    ①②④
C
分析:①利用直角三角形内切圆半径的求法解答即可;
②利用角平分线定义,三角形内角和定理,圆周角定理可得正确性;
③利用角平分线定义,外角知识可得∠EIB=∠EBI,那么EB=EI;
④过E点作角两边的垂线,可以由三角形全等及等腰直角三角形性质,得到(AB+AC)=AE,再由第(1)问,AB+AC=2(IF+R),可得④正确.
解答:①∵直角三角形内切圆半径=
∴IF=
∴AB+AC=BC+2IF,正确;
②∵I为△ABC的内心,
∴∠BIA=90+∠C,
∴4∠BIA=360°+2∠C,
∵∠BOA=2∠C,
∴4∠AIB-∠BOA=360°,正确;


∵点I是△ABC的内心,
∴∠FBI=∠ABI,∠CAD=∠BAD,
∵∠CAD=∠EBC,
∴∠EBC=∠BAD,
∴∠EBC+∠FBI=∠ABI+∠BAD
∴∠EIB=∠EBI,
∴EB=EI.③正确;
④作EN⊥AC于点N,EM⊥AB于点M,连接EC,EB,那么四边形ENAM是矩形,∠ENC=∠EMB=90°,

∵∠BAC是直角,AI平分∠BAC,
∴∠EAN=45°,
∴EN=AN,
∴四边形ENAM是正方形,
∴(AM+AN)=AE,EN=EM,
∵∠CEN+∠NEB=90°,∠NEB+∠MEB=90°,
∴∠CEN=∠BEM,
∴△CEN≌△BEM,
∴CN=BM,
∴(AB+AC)=AE,
由(1)得AB+AC=BC+2IF,
∴AB+AC=2R+2IF,
IF+R=
=
∴④正确.
故选C.
点评:本题综合考查了与圆有关的知识;用到的知识点为:直角三角形内切圆的半径为:,外接圆半径为;利用直角三角形的内切圆的圆心是内角平分线的交点作出辅助线构造全等三角形是解决本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,这是交警部门为缓解哈市区内交通拥挤在西大直街某处设立的路况显示牌.立杆AB高度是1米,从D点测得显示牌顶端C和底端B的仰角分别是60°和45°,则BC的长为
3
-1)
3
-1)
米(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某水库堤坝的横断面为梯形,背水坡AD的坡比(坡比是斜坡的铅直距离与水平距离的比)为1:1.5,迎水坡BC的坡比为1:
3
,坝顶宽CD为3m,坝高CF为10m,则坝底宽AB约为(  )(
3
≈1.732,保留3个有效数字)

查看答案和解析>>

科目:初中数学 来源: 题型:

某市的跨江斜拉大桥建成通车,如图,BC是水平桥面,AD是竖直桥墩,按工程设计的要求,斜拉的钢线AB、AC应相等,请你用学过的知识来检验AB、AC的长度是相等的,写出你的检验方法步骤,并简要说明理由.(检验工具为刻度尺、测角仪;检验时,人只能站在桥面上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某市的跨江斜拉大桥建成通车,如图,BC是水平桥面,AD是竖直桥墩,按工程设计的要求,斜拉的钢线AB、AC应相等,请你用学过的知识来检验AB、AC的长度是相等的,写出你的检验方法步骤,并简要说明理由.(检验工具为刻度尺、测角仪;检验时,人只能站在桥面上)

查看答案和解析>>

同步练习册答案