精英家教网 > 初中数学 > 题目详情
如图,等边三角形ABC和等边三角形DEC,CE和AC重合,CE=
3
2
AB.
(1)求证:AD=BE;
(2)若CE绕点C顺时针旋转30度,连BD交AC于点G,取AB的中点F连FG.求证:BE=2FG;
(3)在(2)的条件下AB=2,则AG=
 
.(直接写出结果)
精英家教网
分析:(1)由三角形ABC和等三角形DEC都是等边三角形,得到∠BCE=∠ACD=60°,CE=CD,CB=CA,则△CBE≌△CAD,从而得到BE=AD.
(2)过B作BT⊥AC于T,连AD,则∠ACE=30°,得∠GCD=90°,而CE=
3
2
AB,BT=
3
2
AB,得BT=CD,可证得Rt△BTG≌Rt△DCG,
有BG=DG,而F为AB的中点,所以FG∥AD,FG=
1
2
AD,易证Rt△BCE≌Rt△ACD,得到BE=AD=2FG;
(3)由(2)Rt△BTG≌Rt△DCG,得到AT=TC,GT=CT,即可得到AG=
3
2
解答:解:(1)证明:∵三角形ABC和等三角形DEC都是等边三角形,
∴∠BCE=∠ACD=60°,CE=CD,CB=CA,
∴△CBE≌△CAD,
∴BE=AD.

(2)证明:过B作BT⊥AC于T,连AD,如图:
精英家教网
∵CE绕点C顺时针旋转30度,
∴∠ACE=30°,
∴∠GCD=90°,
又∵CE=
3
2
AB,
而BT=
3
2
AB,
∴BT=CD,
∴Rt△BTG≌Rt△DCG,∴BG=DG.
∵F为AB的中点,
∴FG∥AD,FG=
1
2
AD,
∵∠BCE=∠ACD=90°,
CB=CA,CE=CD,
∴Rt△BCE≌Rt△ACD.∴BE=AD,
∴BE=2FG;

(3)∵AB=2,
由(2)Rt△BTG≌Rt△DCG,
∴AT=TC,GT=CG,
∴GT=
1
2

∴AG=
3
2

故答案为
3
2
点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等边三角形的性质、三角形全等的判定与性质以及三角形中位线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边三角形AOB的顶点A在反比例函数y=
3
x
(x>0)的图象上,点B在x轴上.
(1)求点B的坐标;
(2)求直线AB的函数表示式;
(3)在y轴上是否存在点P,使△OAP是等腰三角形?若存在,直接把符合条件的点P的坐标都写出来;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则
FG
AF
=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,等边三角形ABC的边长为6,点D,E分别在边AB,AC上,且AD=AE=2.若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒.当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.
(1)设△EGA的面积为S,写出S与t的函数关系式;
(2)当t为何值时,AB⊥GH.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边三角形ABC的边长为a,若D、E、F、G分别为AB、AC、CD、BF的中点,则△BEG的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:013

已知:如图,在等边三角形AB,AD=BE=CF,D,E,F不是各边的中点,AE,BF,CD分别交于P,M,N在每一组全等三角形中,有三个三角形全等,在图中全等三角形的组数是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步练习册答案