精英家教网 > 初中数学 > 题目详情
13.如图,半径为5的⊙O中,弦AB,CD所对的圆心角分别是∠AOB,∠COD.已知CD=6,∠AOB+∠COD=180°,则弦AB的弦心距等于3.

分析 首先作OF⊥AB于F,作直径BE,连接AE,进而得出AE=DC,再利用三角形中位线的性质得出答案.

解答 解:作OF⊥AB于F,作直径BE,连接AE,如图,
∵∠AOB+∠COD=180°,
而∠AOE+∠AOB=180°,
∴∠AOE=∠COD,
∴$\widehat{AE}$=$\widehat{DC}$,
∴AE=DC=6,
∵OF⊥AB,
∴BF=AF,
而OB=OE,
∴OF为△ABE的中位线,
∴OF=$\frac{1}{2}$AE=3.
故答案为:3.

点评 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.在Rt△ABC中,∠C=90°,AB=6,cosB=$\frac{2}{3}$,则BC的长为(  )
A.4B.$2\sqrt{5}$C.$\frac{{18\sqrt{3}}}{13}$D.$\frac{{12\sqrt{3}}}{13}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如:min{2,-4}=-4,min{1,5}=1,则min{-x2+1,-x}的最大值是$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知a、b满足$\sqrt{2a+8}$+|b-$\sqrt{3}$|=0,则关于x的方程(a+2)x2+bx=a-1的解是x1=$\frac{\sqrt{3}+\sqrt{43}}{4}$,x2=$\frac{\sqrt{3}-\sqrt{43}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在平面直角坐标系中,过格点A、B、C作一圆弧.
(1)弧AC的长为$\frac{\sqrt{5}}{2}$π(结果保留π);
(2)点B与图中格点的连线中,能够与该圆弧相切的连线所对应的格点的坐标为(5,1)或(1,3)或(7,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知等腰三角形的顶角为78°4′,底边上的高线长为28.5cm.求这个等腰三角形的腰长和三角形的面积(腰长精确到0.1cm,面积精确到1cm2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某水果店用1000元购进甲、乙两种新出产的水果共140kg,这两种水果的进价、售价如表所示:
进价(元/kg)售价(元/kg)
甲种58
乙种913
(1)这两种水果各购进多少千克?
(2)若该水果店按售价售完这批水果,获得的利润是多少元?
(3)如果这批水果是在一天之内按照售价销售完成的,除了进货成本,水果店每天的其它销售费用是0.1元/kg,那么水果店销售这批水果获得的利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,C为射线AB上一点,AB=30,AC比BC的$\frac{1}{4}$多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:
①BC=2AC;②AB=4NQ;③当PB=$\frac{1}{2}$BQ时,t=12,其中正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.若2m-4和3m-1都是某个正数的平方根,试求这个正数的值.

查看答案和解析>>

同步练习册答案