若实数a、b、c、d满足a2+b2+c2+d2=10,则y=(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2的最大值是 .
【答案】分析:首先由性质:a2+b2≥2ab,即可求得3(a2+b2+c2+d2)≥2ab+2ac+2ad+2bc+2bd+2cd,又由3(a2+b2+c2+d2)≥0与a2+b2+c2+d2=10,即可求得2ab+2ac+2ad+2bc+2bd+2cd的取值范围,计算出y的值,则可求得y的最大值.
解答:解:∵a2+b2+c2+d2=10,
∴y=(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2,
=a2+b2-2ab+a2+c2-2ac+b2+c2-2bc+b2+d2-2bd+c2+d2-2cd,
=3(a2+b2+c2+d2)-2ab-2ac-2ad-2bc-2bd-2cd,
=4(a2+b2+c2+d2)-(a+b+c+d)2,
=40-(a+b+c+d)2,
∵(a+b+c+d)2≥0,
∴当(a+b+c+d)2=0时,y的最大值为40.
故答案为:40.
点评:此题考查了函数最值问题.注意a2+b2≥2ab性质的应用,还要注意整体思想的应用.