精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6)
(1)求二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.
(1)∵y=ax2+bx的图象经过点(2,0)、(-1,6);
0=4a+2b
6=a-b

解得
a=2
b=-4

∴二次函数的解析式为y=2x2-4x.

(2)如图;
由图可知:当y>0时,x>2或x<0.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,建立如图所示的平面直角坐标系.
(1)求这条抛物线所对应的函数关系式;
(2)在对称轴右边1m处,桥洞离水面的高是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c当x=-2时有最大值4,且二次函数图象与直线y=x+1的一个交点为P(m,0),求:
(1)m的值;
(2)二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c经过点A(-1,0)、B(3,0)和C(0,-3),线段BC与抛物线的对称轴相交于点P.M、N分别是线段OC和x轴上的动点,运动时保持∠MPN=90°不变.连结MN,设MC=m.
(1)求抛物线的函数解析式;
(2)用含m的代数式表示△PMN的面积S,并求S的最大值;
(3)以PM、PN为一组邻边作矩形PMDN,当此矩形全部落在抛物线与x轴围成的封闭区域内(含边界)时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,从O点射出炮弹落地点为D,弹道轨迹是抛物线,若击中目标C点,在A测C的仰角∠BAC=45°,在B测C的仰角∠ABC=30°,AB相距(1+
3
)km,OA=2km,AD=2km.
(1)求抛物线解析式;
(2)求抛物线对称轴和炮弹运行时最高点距地面的高度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C1的顶点坐标是D(1,4),且经过点C(2,3),又与x轴交于点A、E(点A在点E左边),与y轴交于点B.
(1)抛物线C1的表达式是______;
(2)四边形ABDE的面积等于______;
(3)问:△AOB与△DBE相似吗?并说明你的理由;
(4)设抛物线C1的对称轴与x轴交于点F.另一条抛物线C2经过点E(C2与C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,并且以M、G、E为顶点的三角形与以点D、E、F为顶点的三角形全等,求a、b的值.(只需写出结果,不必写解答过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,图①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5A1A5,将抛物线放在图②所示的直角坐标系中.
(1)直接写出图②中点B1、B3、B5的坐标;
(2)求图②中抛物线的函数表达式;
(3)求图①中支柱A2B2、A4B4的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一大片空地上有一堵墙(线段AB),现有铁栏杆40m,准备充分利用这堵墙建造一个封闭的矩形花圃.
(1)如果墙足够长,那么应如何设计可使矩形花圃的面积最大?
(2)如果墙AB=8m,那么又要如何设计可使矩形花圃的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=-2,点P是抛物线上位于A,C两点之间的一个动点,则△PAC的面积的最大值为(  )
A.
27
4
B.
11
2
C.
27
8
D.3

查看答案和解析>>

同步练习册答案